Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sleep Med ; 117: 184-191, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555837

RESUMO

BACKGROUND: Isolated rapid-eye-movement behavior disorder (iRBD) often precedes the development of alpha-synucleinopathies such as Parkinson's disease (PD). Magnetic resonance imaging (MRI) studies have revealed structural brain alterations in iRBD partially resembling those observed in PD. However, relatively little is known about whole-brain functional brain alterations in iRBD. Here, we characterize the functional brain connectome of iRBD compared with PD patients and healthy controls (HC) using resting-state functional MRI (rs-fMRI). METHODS: Eighteen iRBD subjects (67.3 ± 6.6 years), 18 subjects with PD (65.4 ± 5.8 years), and 39 age- and sex-matched HC (64.4 ± 9.2 years) underwent rs-fMRI at 3 T. We applied a graph theoretical approach to analyze the brain functional connectome at the global and regional levels. Data were analyzed using both frequentist and Bayesian statistics. RESULTS: Global connectivity was largely preserved in iRBD and PD individuals. In contrast, both disease groups displayed altered local connectivity mainly in the motor network, temporal cortical regions including the limbic system, and the visual system. There were some group specific alterations, and connectivity changes were pronounced in PD individuals. Overall, however, there was a good agreement of the connectome changes observed in both disease groups. CONCLUSIONS: This study provides evidence for widespread functional brain connectivity alterations in iRBD, including motor circuitry, despite normal motor function. Connectome alterations showed substantial resemblance with those observed in PD, underlining a close pathophysiological relationship of iRBD and PD.


Assuntos
Conectoma , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Teorema de Bayes , Encéfalo
2.
Cerebellum ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438827

RESUMO

The influence of brain atrophy on sleep microstructure in Spinocerebellar Ataxias (SCAs) has not been extensively explored limiting the use of these sleep traits as surrogate biomarkers of neurodegeneration and clinical phenotype. The objective of the study is to explore the relationship between sleep microstructure and brain atrophy in SCA2 and its role in the clinical phenotype. Fourteen SCA2 mutation carriers (7 pre-manifest and 7 manifest subjects) underwent polysomnographic, structural MRI, and clinical assessments. Particularly, markers of REM and non-REM sleep microstructure, measures of cerebellar and brainstem atrophy, and clinical scores were analyzed through correlation and mediation analyses. The sleep spindle activity exhibited a negative correlation with the number of trials required to complete the verbal memory test (VMT), and a positive correlation with the cerebellar volume, but the significance of the latter correlation did not survive multiple testing corrections. However, the causal mediation analyses unveiled that sleep spindle activity significantly mediates the association between cerebellar atrophy and VMT performance. Regarding REM sleep, both phasic EMG activity and REM sleep without atonia exhibited significant associations with pontine atrophy and disease severity measures. However, they did not demonstrate a causal mediation effect between the atrophy measures and disease severity. Our study provides evidence about the association of the pontocerebellar atrophy with sleep microstructure in SCA2 offering insights into the cerebellar involvement in cognition via the control of the sleep spindle activity. Therefore, our findings may help to understand the disease pathogenesis and to better characterize sleep microstructure parameters as disease biomarkers.Clinical trial registration number (TRN): No applicable.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38383154

RESUMO

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.

4.
Ann Neurol ; 95(2): 400-406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37962377

RESUMO

Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/genética , Estudos Transversais , Ataxia , Biomarcadores
5.
medRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163081

RESUMO

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3) is the most common autosomal dominant ataxia. In view of the development of targeted therapies for SCA3, precise knowledge of stage-dependent fluid and MRI biomarker changes is needed. We analyzed cross-sectional data of 292 SCA3 mutation carriers including 57 pre-ataxic individuals, and 108 healthy controls from the European Spinocerebellar ataxia type 3/Machado-Joseph Disease Initiative (ESMI) cohort. Blood concentrations of mutant ATXN3 and neurofilament light (NfL) were determined, and volumes of pons, cerebellar white matter (CWM) and cerebellar grey matter (CGM) were measured on MRI. Mutant ATXN3 concentrations were high before and after ataxia onset, while NfL continuously increased and deviated from normal 11.9 years before onset. Pons and CWM volumes decreased, but the deviation from normal was only 2.0 years (pons) and 0.3 years (CWM) before ataxia onset. We propose a staging model of SCA3 that includes an initial asymptomatic carrier stage followed by the biomarker stage defined by absence of ataxia, but a significant rise of NfL. The biomarker stage leads into the ataxia stage, defined by manifest ataxia. The present analysis provides a robust framework for further studies aiming at elaboration and differentiation of the staging model of SCA3.

6.
Brain ; 146(8): 3319-3330, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795496

RESUMO

Structural grey and white matter changes precede the manifestation of clinical signs of Huntington's disease by many years. Conversion to clinically manifest disease therefore likely reflects not merely atrophy but a more widespread breakdown of brain function. Here, we investigated the structure-function relationship close to and after clinical onset, in important regional brain hubs, particularly caudate nucleus and putamen, which are central to maintaining normal motor behaviour. In two independent cohorts of patients with premanifest Huntington's disease close to onset and very early manifest Huntington's disease (total n = 84; n = 88 matched controls), we used structural and resting state functional MRI. We show that measures of functional activity and local synchronicity within cortical and subcortical regions remain normal in the premanifest Huntington's disease phase despite clear evidence of brain atrophy. In manifest Huntington's disease, homeostasis of synchronicity was disrupted in subcortical hub regions such as caudate nucleus and putamen, but also in cortical hub regions, for instance the parietal lobe. Cross-modal spatial correlations of functional MRI data with receptor/neurotransmitter distribution maps showed that Huntington's disease-specific alterations co-localize with dopamine receptors D1 and D2, as well as dopamine and serotonin transporters. Caudate nucleus synchronicity significantly improved models predicting the severity of the motor phenotype or predicting the classification into premanifest Huntington's disease or motor manifest Huntington's disease. Our data suggest that the functional integrity of the dopamine receptor-rich caudate nucleus is key to maintaining network function. The loss of caudate nucleus functional integrity affects network function to a degree that causes a clinical phenotype. These insights into what happens in Huntington's disease could serve as a model for what might be a more general relationship between brain structure and function in neurodegenerative diseases in which other brain regions are vulnerable.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/metabolismo , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/metabolismo , Dopamina , Encéfalo/patologia , Atrofia/patologia , Imageamento por Ressonância Magnética , Fenótipo
7.
Neuroimage Clin ; 37: 103315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36610308

RESUMO

BACKGROUND: Impulse control behaviors (ICB) are frequently observed in patients with Parkinson's disease (PD) and are characterized by compulsive and repetitive behavior resulting from the inability to resist internal drives. OBJECTIVES: In this study, we aimed to provide a better understanding of structural and functional brain alterations and clinical parameters related to ICB in PD patients. METHODS: We utilized a dataset from the Parkinson's Progression Markers Initiative including 36 patients with ICB (PDICB+) compared to 76 without ICB (PDICB-) and 61 healthy controls (HC). Using multimodal MRI data we assessed gray matter brain volume, white matter integrity, and graph topological properties at rest. RESULTS: Compared with HC, PDICB+ showed reduced gray matter volume in the bilateral superior and middle temporal gyrus and in the right middle occipital gyrus. Compared with PDICB-, PDICB+ showed volume reduction in the left anterior insula. Depression and anxiety were more prevalent in PDICB+ than in PDICB- and HC. In PDICB+, lower gray matter volume in the precentral gyrus and medial frontal cortex, and higher axial diffusivity in the superior corona radiata were related to higher depression score. Both PD groups showed disrupted functional topological network pattern within the cingulate cortex compared with HC. PDICB+ vs PDICB- displayed reduced topological network pattern in the anterior cingulate cortex, insula, and nucleus accumbens. CONCLUSIONS: Our results suggest that structural alterations in the insula and abnormal topological connectivity pattern in the salience network and the nucleus accumbens may lead to impaired decision making and hypersensitivity towards reward in PDICB+. Moreover, PDICB+ are more prone to suffer from depression and anxiety.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal
8.
Mov Disord ; 38(1): 45-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308733

RESUMO

BACKGROUND: Spinal cord damage is a hallmark of Friedreich's ataxia (FRDA), but its progression and clinical correlates remain unclear. OBJECTIVE: The objective of this study was to perform a characterization of cervical spinal cord structural damage in a large multisite FRDA cohort. METHODS: We performed a cross-sectional analysis of cervical spinal cord (C1-C4) cross-sectional area (CSA) and eccentricity using magnetic resonance imaging data from eight sites within the ENIGMA-Ataxia initiative, including 256 individuals with FRDA and 223 age- and sex-matched control subjects. Correlations and subgroup analyses within the FRDA cohort were undertaken based on disease duration, ataxia severity, and onset age. RESULTS: Individuals with FRDA, relative to control subjects, had significantly reduced CSA at all examined levels, with large effect sizes (d > 2.1) and significant correlations with disease severity (r < -0.4). Similarly, we found significantly increased eccentricity (d > 1.2), but without significant clinical correlations. Subgroup analyses showed that CSA and eccentricity are abnormal at all disease stages. However, although CSA appears to decrease progressively, eccentricity remains stable over time. CONCLUSIONS: Previous research has shown that increased eccentricity reflects dorsal column (DC) damage, while decreased CSA reflects either DC or corticospinal tract (CST) damage, or both. Hence our data support the hypothesis that damage to the DC and damage to CST follow distinct courses in FRDA: developmental abnormalities likely define the DC, while CST alterations may be both developmental and degenerative. These results provide new insights about FRDA pathogenesis and indicate that CSA of the cervical spinal cord should be investigated further as a potential biomarker of disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Transtornos dos Movimentos , Humanos , Ataxia de Friedreich/complicações , Ataxia de Friedreich/patologia , Ataxia , Imageamento por Ressonância Magnética/métodos , Tratos Piramidais
9.
PLoS One ; 17(11): e0269649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36410013

RESUMO

INTRODUCTION: Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA. METHODS: 200 individuals with FRDA and 104 control participants will be recruited across seven international study sites. Inclusion criteria for participants with genetically confirmed FRDA involves, age of disease onset ≤ 25 years, Friedreich's Ataxia Rating Scale (FARS) functional staging score of ≤ 5, and a total modified FARS (mFARS) score of ≤ 65 upon enrolment. The control cohort is matched to the FRDA cohort for age, sex, handedness, and years of education. Participants will be evaluated at three study visits over two years. Each visit comprises of a harmonized multimodal Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) scan of the brain and spinal cord; clinical, cognitive, mood and speech assessments and collection of a blood sample. Primary outcome measures, informed by previous neuroimaging studies, include measures of: spinal cord and brain morphometry, spinal cord and brain microstructure (measured using diffusion MRI), brain iron accumulation (using Quantitative Susceptibility Mapping) and spinal cord biochemistry (using MRS). Secondary and exploratory outcome measures include clinical, cognitive assessments and blood biomarkers. DISCUSSION: Prioritising immediate areas of need, TRACK-FA aims to deliver a set of sensitive, clinical trial-ready neuroimaging biomarkers to accelerate drug discovery efforts and better understand disease trajectory. Once validated, these potential pharmacodynamic biomarkers can be used to measure the efficacy of new therapeutics in forestalling disease progression. CLINICAL TRIAL REGISTRATION: ClinicalTrails.gov Identifier: NCT04349514.


Assuntos
Ataxia de Friedreich , Adulto , Humanos , Biomarcadores , Encéfalo/patologia , Progressão da Doença , Ataxia de Friedreich/patologia , Espectroscopia de Ressonância Magnética
10.
Sci Rep ; 12(1): 19173, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357508

RESUMO

We explored whether disease severity of Friedreich ataxia can be predicted using data from clinical examinations. From the database of the European Friedreich Ataxia Consortium for Translational Studies (EFACTS) data from up to five examinations of 602 patients with genetically confirmed FRDA was included. Clinical instruments and important symptoms of FRDA were identified as targets for prediction, while variables such as genetics, age of disease onset and first symptom of the disease were used as predictors. We used modelling techniques including generalised linear models, support-vector-machines and decision trees. The scale for rating and assessment of ataxia (SARA) and the activities of daily living (ADL) could be predicted with predictive errors quantified by root-mean-squared-errors (RMSE) of 6.49 and 5.83, respectively. Also, we were able to achieve reasonable performance for loss of ambulation (ROC-AUC score of 0.83). However, predictions for the SCA functional assessment (SCAFI) and presence of cardiological symptoms were difficult. In conclusion, we demonstrate that some clinical features of FRDA can be predicted with reasonable error; being a first step towards future clinical applications of predictive modelling. In contrast, targets where predictions were difficult raise the question whether there are yet unknown variables driving the clinical phenotype of FRDA.


Assuntos
Ataxia de Friedreich , Humanos , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Atividades Cotidianas , Progressão da Doença , Índice de Gravidade de Doença , Ataxia
11.
Neuroimage Clin ; 34: 103025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35500368

RESUMO

In patients with Friedreich ataxia, structural MRI is typically used to detect abnormalities primarily in the brainstem, cerebellum, and spinal cord. The aim of the present study was to additionally investigate possible metabolic changes in Friedreich ataxia using in vivo sodium MRI that may precede macroanatomical alterations, and to explore potential associations with clinical parameters of disease progression. Tissue sodium concentration across the whole brain was estimated from sodium MRI maps acquired at 3 T and compared between 24 patients with Friedreich ataxia (21-57 years old, 13 females) and 23 controls (21-60 years old, 12 females). Tensor-based morphometry was used to assess volumetric changes. Total sodium concentrations and volumetric data in brainstem and cerebellum were correlated with clinical parameters, such as severity of ataxia, activity of daily living and disability stage, age, age at onset, and disease duration. Compared to controls, patients showed reduced brain volume in the right cerebellar lobules I-V (difference in means: -0.039% of total intracranial volume [TICV]; Cohen's d = 0.83), cerebellar white matter (WM) (-0.105%TICV; d = 1.16), and brainstem (-0.167%TICV; d = 1.22), including pons (-0.102%TICV; d = 1.00), medulla (-0.036%TICV; d = 1.72), and midbrain (-0.028%TICV; d = 1.05). Increased sodium concentration was additionally detected in the total cerebellum (difference in means: 2.865 mmol; d = 0.68), and in several subregions with highest effect sizes in left (5.284 mmol; d = 1.01) and right cerebellar lobules I-V (5.456 mmol; d = 1.00), followed by increases in the vermis (4.261 mmol; d = 0.72), and in left (2.988 mmol; d = 0.67) and right lobules VI-VII (2.816 mmol; d = 0.68). In addition, sodium increases were also detected in all brainstem areas (3.807 mmol; d = 0.71 to 5.42 mmol; d = 1.19). After controlling for age, elevated total sodium concentrations in right cerebellar lobules IV were associated with younger age at onset (r = -0.43) and accordingly with longer disease duration in patients (r = 0.43). Our findings support the potential of in vivo sodium MRI to detect metabolic changes of increased total sodium concentration in the cerebellum and brainstem, the key regions in Friedreich ataxia. In addition to structural changes, sodium changes were present in cerebellar hemispheres and vermis without concomitant significant atrophy. Given the association with age at disease onset or disease duration, metabolic changes should be further investigated longitudinally and in larger cohorts of early disease stages to determine the usefulness of sodium MRI as a biomarker for early neuropathological changes in Friedreich ataxia and efficacy measure for future clinical trials.


Assuntos
Ataxia de Friedreich , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Feminino , Ataxia de Friedreich/diagnóstico por imagem , Ataxia de Friedreich/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Sódio , Adulto Jovem
12.
J Neurol ; 269(8): 4363-4374, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35364683

RESUMO

BACKGROUND: A brief bedside test has recently been introduced by Hoche et al. (Brain, 2018) to screen for the Cerebellar Cognitive Affective Syndrome (CCAS) in patients with cerebellar disease. OBJECTIVE: This multicenter study tested the ability of the CCAS-Scale to diagnose CCAS in individual patients with common forms of hereditary ataxia. METHODS: A German version of the CCAS-Scale was applied in 30 SCA3, 14 SCA6 and 20 FRDA patients, and 64 healthy participants matched for age, sex, and level of education. Based on original cut-off values, the number of failed test items was assessed, and CCAS was considered possible (one failed item), probable (two failed items) or definite (three failed items). In addition a total sum raw score was calculated. RESULTS: On a group level, failed items were significantly higher and total sum scores were significantly lower in SCA3 patients compared to matched controls. SCA6 and FRDA patients performed numerically below controls, but respective group differences failed to reach significance. The ability of the CCAS-Scale to diagnose CCAS in individual patients was limited to severe cases failing three or more items. Milder cases failing one or two items showed a great overlap with the performance of controls exhibiting a substantial number of false-positive test results. The word fluency test items differentiated best between patients and controls. CONCLUSIONS: As a group, SCA3 patients performed below the level of SCA6 and FRDA patients, possibly reflecting additional cerebral involvement. Moreover, the application of the CCAS-Scale in its present form results in a high number of false-positive test results, that is identifying controls as patients, reducing its usefulness as a screening tool for CCAS in individual patients.


Assuntos
Doenças Cerebelares , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Encéfalo , Humanos , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética
13.
Cerebellum ; 21(3): 391-403, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34313938

RESUMO

The cerebellar cognitive affective syndrome scale (CCAS-S) was designed to detect specific cognitive dysfunctions in cerebellar patients but is scarcely validated in spinocerebellar ataxias (SCA). The objective of this study is to determine the usefulness of the CCAS-S in a Cuban cohort of SCA2 patients and the relationship of its scores with disease severity. The original scale underwent a forward and backward translation into Spanish language, followed by a pilot study to evaluate its comprehensibility. Reliability, discriminant, and convergent validity assessments were conducted in 64 SCA2 patients and 64 healthy controls matched for sex, age, and education. Fifty patients completed the Montreal Cognitive Assessment (MoCA) test. The CCAS-S showed an acceptable internal consistency (Cronbach's alpha = 0.74) while its total raw score and the number of failed tests showed excellent (ICC = 0.94) and good (ICC = 0.89) test-retest reliability, respectively. Based on original cut-offs, the sensitivity of CCAS-S to detect possible/probable/definite CCAS was notably high (100%/100%/91%), but specificities were low (6%/30/64%) because the decreased specificity observed in four items. CCAS-S performance was significantly influenced by ataxia severity in patients and by education in both groups. CCAS-S scores correlated with MoCA scores, but showed higher sensitivity than MoCA to detect cognitive impairments in patients. The CCAS-S is particularly useful to detect cognitive impairments in SCA2 but some transcultural and/or age and education-dependent adaptations could be necessary to improve its diagnostic properties. Furthermore, this scale confirmed the parallelism between cognitive and motor deficits in SCA2, giving better insights into the disease pathophysiology and identifying novel outcomes for clinical trials.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Disfunção Cognitiva , Ataxias Espinocerebelares , Ataxia , Disfunção Cognitiva/diagnóstico , Humanos , Projetos Piloto , Reprodutibilidade dos Testes , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico , Síndrome
14.
J Neurol ; 269(2): 923-932, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34170404

RESUMO

INTRODUCTION: Studies have reported autonomic impairment in patients with idiopathic REM sleep behaviour disorder (iRBD), which is considered a prodromal stage of alpha-synucleinopathies. It is still debated whether central or peripheral pathologies are first manifestations of alpha-synucleinopathies. This study aimed to characterize autonomic and somatosensory function in iRBD patients. METHODS: This cross-sectional prospective case-control study included 17 iRBD patients (mean age 66.3 ± 9.2 years) and 16 healthy controls (HCs, 66.6 ± 11.3 years). Quantitative sensory testing, neurological and neuropsychological assessments, norepinephrine blood plasma levels, tilt table examination with orthostatic blood pressure, and heart rate variability were carried out. Longitudinal data of 10 iRBD patients, including neurological, neuropsychological, and tilt table examination, were assessed. RESULTS: iRBD patients more frequently presented with orthostatic dysfunction than HCs (70.6% vs. 6.3%, p < 0.0001). Supine norepinephrine plasma levels were normal, but lower in iRBD (249.59 ± 99.78 pg/ml iRBD, 354.13 ± 116.38 pg/ml HCs, p < 0.05). Quantitative sensory testing revealed impaired cold (CDT) and vibration detection thresholds (VDT) on the foot in iRBD (CDT foot iRBD - 1.24 ± 0.31, HCs - 9.89E-17 ± 0.25, VDT iRBD - 1.11 ± 0.47, HCs - 1.46E-16 ± 0.25, p < 0.05). Cold detection thresholds differed between the foot and hand among iRBD patients (foot - 1.24 ± 0.31, hand - 0.56 ± 0.25, p < 0.05). Longitudinal data revealed an increase in maximum systolic and diastolic orthostatic blood pressure changes and a decrease in the Valsalva ratio in the follow-up group (p < 0.05). CONCLUSION: This study revealed autonomic dysfunction with somatosensory impairment, and decreased norepinephrine levels in iRBD, which may serve as a possible prodromal marker for developing alpha-synucleinopathy.


Assuntos
Transtorno do Comportamento do Sono REM , Idoso , Sistema Nervoso Autônomo , Estudos de Casos e Controles , Estudos Transversais , Humanos , Pessoa de Meia-Idade , Norepinefrina
15.
Parkinsonism Relat Disord ; 92: 76-82, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34715608

RESUMO

INTRODUCTION: Altered brain activity and functional reorganization patterns during self-initiated movements have been reported in early pre-motor and motor stages of Parkinson's disease. The aim of this study was to investigate whether similar alterations can be observed in patients with idiopathic REM-sleep behavior disorder (RBD). METHODS: 13 polysomnography-confirmed male and right-handed RBD patients and 13 healthy controls underwent a bilateral hand-movement fMRI task including internally selected (INT) and externally-guided (EXT) movement conditions for each hand. We examined functional activity and connectivity differences between groups and task-conditions, structural differences using voxel-based morphometry, as well as associations between functional activity and clinical variables. RESULTS: No group differences were observed in fMRI-task performance or in voxel-based morphometry. Both groups showed faster reaction times and exhibited greater neural activation when movements were internally selected compared to externally-guided tasks. Compared to controls, RBD patients displayed stronger activation in the dorsolateral prefrontal cortex and primary somatosensory cortex during INT-tasks, and in the right fronto-insular cortex during EXT-tasks performed with the non-dominant hand. Stronger activation in RBD patients was associated with cognitive and olfactory impairment. Connectivity analysis demonstrated overall less interregional coupling in patients compared to controls. In particular, patients showed reduced temporo-cerebellar, occipito-cerebellar and intra-cerebellar connectivity, but stronger connectivity in fronto-cerebellar and fronto-occipital pathways. CONCLUSION: The observed stronger activation during hand-movement tasks and connectivity changes in RBD may reflect early compensatory and reorganization patterns in order to preserve motor functioning. Our findings may contribute to a better understanding and prognosis of prodromal stages of α-synucleinopathies.


Assuntos
Imageamento por Ressonância Magnética , Neurônios Motores/fisiologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Córtex Pré-Frontal Dorsolateral/fisiopatologia , Mãos/diagnóstico por imagem , Mãos/fisiopatologia , Humanos , Córtex Insular/diagnóstico por imagem , Córtex Insular/fisiopatologia , Masculino , Pessoa de Meia-Idade , Movimento , Transtornos do Olfato/diagnóstico por imagem , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Polissonografia , Sintomas Prodrômicos , Transtorno do Comportamento do Sono REM/complicações , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiopatologia , Sinucleinopatias/complicações , Sinucleinopatias/diagnóstico por imagem , Sinucleinopatias/fisiopatologia , Análise e Desempenho de Tarefas
16.
Brain Commun ; 3(3): fcab191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541531

RESUMO

Machine learning can reliably predict individual age from MRI data, revealing that patients with neurodegenerative disorders show an elevated biological age. A surprising gap in the literature, however, pertains to Parkinson's disease. Here, we evaluate brain age in two cohorts of Parkinson's patients and investigated the relationship between individual brain age and clinical characteristics. We assessed 372 patients with idiopathic Parkinson's disease, newly diagnosed cases from the Parkinson's Progression Marker Initiative database and a more chronic local sample, as well as age- and sex-matched healthy controls. Following morphometric preprocessing and atlas-based compression, individual brain age was predicted using a multivariate machine learning model trained on an independent, multi-site reference sample. Across cohorts, healthy controls were well predicted with a mean error of 4.4 years. In turn, Parkinson's patients showed a significant (controlling for age, gender and site) increase in brain age of ∼3 years. While this effect was already present in the newly diagnosed sample, advanced biological age was significantly related to disease duration as well as worse cognitive and motor impairment. While biological age is increased in patients with Parkinson's disease, the effect is at the lower end of what is found for other neurological and psychiatric disorders. We argue that this may reflect a heterochronicity between forebrain atrophy and small but behaviourally salient midbrain pathology. Finally, we point to the need to disentangle physiological ageing trajectories, lifestyle effects and core pathological changes.

17.
Ann Neurol ; 90(4): 570-583, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34435700

RESUMO

OBJECTIVE: Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. METHODS: A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole-brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. RESULTS: The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5-2.6). Cerebellar gray matter alterations were most pronounced in lobules I-VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax  = 0.35) and peduncles (rmax  = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax  = -0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. INTERPRETATION: FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570-583.


Assuntos
Encéfalo/patologia , Ataxia de Friedreich/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Adulto , Idade de Início , Encéfalo/anatomia & histologia , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tratos Piramidais/patologia , Adulto Jovem
18.
Sci Rep ; 11(1): 16385, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385535

RESUMO

Vascular mechanisms are increasingly recognized in the pathophysiology of Alzheimer's disease (AD), but less is known about the occurrence of stroke in AD patients. We aimed to quantify the risk of stroke in patients with AD and compare the incidence rates (IR) of stroke in individuals without AD. Systematic search of Embase and MEDLINE between 1970 and 2020. Inclusion criteria: reports with ≥ 50 patients with non-familial AD, which reported the occurrence of stroke (all types) and/or ischemic stroke and/or intracerebral hemorrhage (ICH) during follow-up. Meta-analyses of pooled data using random-effects model were performed. IR were calculated for each study. Incidence rate ratios (IRR) were calculated for studies presenting a control-group without AD. Among 5109 retrieved studies, 29 (0.6%) fulfilled the inclusion criteria, reporting a total of 61,824 AD patients. In AD patients the IR were 15.4/1000 person-years for stroke (all types), 13.0/1000 person-years for ischemic stroke and 3.4/1000 person-years for ICH. When compared to controls without AD, incidence rate for ICH in AD patients was significantly higher (IRR = 1.67, 95%CI 1.43-1.96), but similar for ischemic stroke. Incident stroke is not a rare event in AD population. AD is associated with an increased risk of intracerebral hemorrhage which warrants further clarification.


Assuntos
Doença de Alzheimer/fisiopatologia , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/fisiopatologia , Hemorragia Cerebral/epidemiologia , Hemorragia Cerebral/fisiopatologia , Humanos , Incidência , Fatores de Risco
19.
Eur J Neurol ; 28(9): 2855-2862, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34077591

RESUMO

BACKGROUND AND PURPOSE: Dysphagia is one of the most common and important complications in Huntington disease (HD), frequently leading to aspiration pneumonia and mortality. Objective estimates of prevalence using instrumental diagnostics and data on neural correlates of dysphagia in HD are scarce or lacking entirely. Similarly, its correlation with other clinical markers is still not fully known. We aimed at defining clinical risk factors and neural correlates for compromised swallowing safety in HD more precisely. METHODS: Thirty-four HD subjects (16 female, Shoulson & Fahn Stage I-IV, two premanifest) underwent a full clinical-neurological examination including the cranial nerves, the Unified Huntington's Disease Rating Scale total motor score, and the Mini-Mental State Examination. Fiberoptic endoscopic evaluation of swallowing (FEES) was performed by a trained speech and language therapist. Twenty-six subjects additionally underwent a high-resolution anatomical magnetic resonance imaging (MRI) scan (T1, 3-T Siemens Prisma). Moreover, we correlated clinical and atrophy (MRI) measures with swallowing safety levels as judged by the validated Penetration-Aspiration Scale. RESULTS: FEES showed penetration or aspiration in 70.6%. Using partial correlation, no significant correlations were found between swallowing safety and any of the clinical markers after correcting for disease duration and CAG repeat length. Voxel-based morphometry demonstrated atrophy associated with compromised swallowing safety in a network of parietothalamocerebellar areas related to sensorimotor communication, notably excluding striatum. CONCLUSIONS: Our results characterise dysphagia in HD as a disorder of communication between sensory and motor networks involved in swallowing. This finding and high rates of silent aspiration argue in favor of instrumental swallowing evaluation early in the disease.


Assuntos
Transtornos de Deglutição , Doença de Huntington , Deglutição , Transtornos de Deglutição/diagnóstico por imagem , Transtornos de Deglutição/etiologia , Feminino , Substância Cinzenta , Humanos , Doença de Huntington/complicações , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética
20.
Neuroimage ; 235: 118006, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819611

RESUMO

A wide homology between human and macaque striatum is often assumed as in both the striatum is involved in cognition, emotion and executive functions. However, differences in functional and structural organization between human and macaque striatum may reveal evolutionary divergence and shed light on human vulnerability to neuropsychiatric diseases. For instance, dopaminergic dysfunction of the human striatum is considered to be a pathophysiological underpinning of different disorders, such as Parkinson's disease (PD) and schizophrenia (SCZ). Previous investigations have found a wide similarity in structural connectivity of the striatum between human and macaque, leaving the cross-species comparison of its functional organization unknown. In this study, resting-state functional connectivity (RSFC) derived striatal parcels were compared based on their homologous cortico-striatal connectivity. The goal here was to identify striatal parcels whose connectivity is human-specific compared to macaque parcels. Functional parcellation revealed that the human striatum was split into dorsal, dorsomedial, and rostral caudate and ventral, central, and caudal putamen, while the macaque striatum was divided into dorsal, and rostral caudate and rostral, and caudal putamen. Cross-species comparison indicated dissimilar cortico-striatal RSFC of the topographically similar dorsal caudate. We probed clinical relevance of the striatal clusters by examining differences in their cortico-striatal RSFC and gray matter (GM) volume between patients (with PD and SCZ) and healthy controls. We found abnormal RSFC not only between dorsal caudate, but also between rostral caudate, ventral, central and caudal putamen and widespread cortical regions for both PD and SCZ patients. Also, we observed significant structural atrophy in rostral caudate, ventral and central putamen for both PD and SCZ while atrophy in the dorsal caudate was specific to PD. Taken together, our cross-species comparative results revealed shared and human-specific RSFC of different striatal clusters reinforcing the complex organization and function of the striatum. In addition, we provided a testable hypothesis that abnormalities in a region with human-specific connectivity, i.e., dorsal caudate, might be associated with neuropsychiatric disorders.


Assuntos
Núcleo Caudado/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Rede Nervosa/fisiologia , Doença de Parkinson , Putamen/fisiologia , Esquizofrenia , Adulto , Idoso , Animais , Núcleo Caudado/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Conjuntos de Dados como Assunto , Feminino , Humanos , Macaca , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Putamen/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Especificidade da Espécie , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...