Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EXCLI J ; 22: 35-52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660193

RESUMO

Combinations of the well-known antineoplastic agents 5-fluorouracil (5-Fu), cisplatin, and paclitaxel are employed to increase radiotherapy/immunotherapy efficacy against persistent and resistant tumors. However, data remains needed on the hormetic, chronic, and long-term side effects of these aggressive combination chemotherapies. Here we investigated cellular and molecular responses associated with these combined agents, and their potential to induce multi-drug resistance against the temozolomide (TMZ) and etoposide (EP) used in glioblastoma maintenance treatment. We analyzed resistance and survival signals in U87 MG cells using molecular probes, fluorescent staining, qRT-PCR, and immunoblot. Repeated treatment with combined 5-Fu, cisplatin, and paclitaxel induced cross-resistance against TMZ and EP. Resistant cells exhibited elevated gene/protein expression of MRP1/ABCC1, ABCC2, BRCP/ABCG2, and GST. Moreover, they managed oxidative stress, cell cycle, apoptosis, and autophagy signaling to ensure survival. In these groups TMZ and etoposide efficiency dramatically reduced. Our result suggests that combined high-dose treatments of classical antineoplastic agents to sensitize tumors may trigger multi-drug resistance and inhibit maintenance treatment. When deciding on antineoplastic combination therapy for persistent/resistant glioblastoma, we recommend analyzing the long-term hormetic and chronic effects on cross-resistance and multi-drug resistance in primary cell cultures from patients. See also the Graphical Abstract(Fig. 1).

2.
Asian Spine J ; 17(1): 194-202, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36163678

RESUMO

STUDY DESIGN: This is a retrospective cohort study. PURPOSE: This study aimed to clarify the role of crosstalk between discoidin domain receptors (DDRs) and matrix metalloproteinases (MMPs) in the ligamentum flavum (LF) fibrosis obtained from patients with degenerative lumbar canal stenosis (DLCS). OVERVIEW OF LITERATURE: The DDRs, DDR1 and DDR2, are cell surface receptors and have an essential role in collagen fiber accumulation in several fibrotic diseases. MMPs are one of the critical factors in extracellular matrix remodeling and elastic fiber degradation in LF tissues. However, the crosstalk between DDRs and MMPs and the role of this molecular signal in LF fibrosis remain unclear. METHODS: A total of 35 patients were divided into two groups in this study. Spinal surgery was performed in 23 of these patients with the diagnosis of DLCS. Twelve patients with lumbar disk herniation (LDH) were included in the control group. On axial T2-weighted magnetic resonance imaging, LF thickness was measured bilaterally at the level of the facet joint. Histology, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot analyses were performed on LF tissue samples. LF tissues were stained with hematoxylin and eosin. In addition, the grade of fibrosis was histologically assessed using Masson trichrome triple staining. DDR1 and DDR2 Western blot analyses were performed. DDR1, DDR2, MMP2, MMP3, MMP9, and MMP13 expression levels were measured using qRT-PCR analysis. RESULTS: The grade of fibrosis and LF thickness were significantly higher in the DLCS patients than in the LDH patients. DDR1 and DDR2 gene expression and protein levels in LF tissues are significantly greater in DLCS samples than in control samples, according to both qRT-PCR and Western blot analyses. In addition, we detected a significant expression of the MMP3, MMP9, and MMP13, which are known to have important roles in extracellular matrix remodeling in DLCS. Furthermore, we discovered a link between DDR protein levels and LF thickness, fibrosis, and MMP3/MMP9. CONCLUSIONS: Our results indicate that DDR1, DDR2, and MMP3 and MMP9 signals can be correlated with each other in LF tissues and be promoted LF fibrosis leading to spinal canal narrowing in patients with DLCS.

3.
Toxicol In Vitro ; 83: 105413, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690295

RESUMO

Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide, particularly in developed countries. Recently, microRNAs (miRs) have become popular research area to develop new treatment options of AMD. However, interaction between hsa-miR-184 and AMD remain largely unexplored. In this study, sub-lethal levels of Deforoxamine Mesylate salt (DFX) and H2O2 were applied to ARPE-19 cells to establish a severe in vitro AMD model, via durable hypoxia and oxidative stress. We found that up-regulation of miR-184 level in AMD can suppress hypoxia-related angiogenic signals through HIF-1α/VEGF/MMPs axis. Also, miR-184 suppressed the hypoxia sensor miR-155 and genes in the EGFR/PI3K/AKT pathway, which is an alternative pathway in angiogenesis. To investigate the mechanism behind this protective effect, we evaluated the impact of miR-184 on retinal apoptosis in a model of AMD. miR-184 inhibited retinal apoptosis by upregulating BCL-2 and downregulating pro-apoptototic BAX, TRAIL, Caspase 3 and 8 signals as well as p53. Taken together, miR-184 attenuates retinal cell damage induced by severe AMD pathologies through suppressing hypoxia, angiogenesis and apoptosis. The safety profile of miR-184 was observed to be similar to Bevacizumab, which is in wide use clinically, but miR-184 was found to provide a more effective therapeutic potential by regulating simultaneously multiple pathologies.


Assuntos
Degeneração Macular , MicroRNAs , Apoptose , Dano ao DNA , Humanos , Peróxido de Hidrogênio/metabolismo , Hipóxia/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Epitélio Pigmentado da Retina
4.
Drug Chem Toxicol ; 45(3): 1158-1167, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32847431

RESUMO

The aim of this study is to investigate the genotoxic effects of mixtures of five metals on zebrafish at two different concentrations; at the permissible maximum contamination levels in drinking water and irrigation waters. The drinking water limits are as follows: 300 µg/L for Aluminum (Al+3), 10 µg/L for Arsenic (As+3), 5 µg/L for Cadmium (Cd+2), 10 µg/L for Cobalt (Co+2), and 50 µg/L for Chromium (Cr+2). The irrigation water limits: 5000 µg/L for Al+3, 100 µg/L for As+3, 10 µg/L for Cd+2, 50 µg/L for Co+2, and 100 µg/L for Cr+2. The zebrafish underwent chronic exposure for periods of 5, 10, and 20 days. The gene expressions for mitochondrial superoxide dismutase (SOD2), stress-specific receptor protein NCCRP1, the heat shock proteins: Hsp9, Hsp14, Hsp60, Hsp70, DNA repair (XRCC1 and EXO1), and apoptosis (BOK and BAX) were evaluated. It was found that exposure to the low- and high-concentrations of the heavy metal mixtures caused cell stress, an increased expression of the antioxidant genes, and repair proteins. As the duration of exposure was increased, the cells progressed through the apoptotic pathway. This was more evident in the high-concentration exposure groups. The results demonstrated the necessity for a reevaluation of the maximum values of heavy metal and toxic element concentrations as prescribed by the Local Standing Rules of Water Pollution Control Regulation, as well as a reevaluation of the limitations of heavy metal mixture interactions with respect to ecological balance and environmental health.HighlightsThe purpose of this study was to investigate the genotoxic effects of a mixture of Aluminum, Arsenic, Cadmium, Cobalt, Chromium on zebrafish, within drinking water, and irrigation water limits determining the concentration.The zebrafish were exposed to two different concentrations of each metal mixture for 5-, 10-, and 20-day periods. Following exposure, gene expressions of the zebrafish's gill tissues were examined.As a result of the exposure to the metal mixtures, the following occurred: cell stress, increased antioxidant gene activity, and attempts to protect cell viability. However, the cells progressed through the apoptotic pathway after prolonged exposure.The results demonstrated the necessity for a reevaluation of the maximum limits of metal and toxic element concentrations as stated in the Standing Rules of Water Pollution Control Regulation.


Assuntos
Arsênio , Água Potável , Metais Pesados , Poluentes Químicos da Água , Alumínio , Animais , Antioxidantes/metabolismo , Arsênio/metabolismo , Arsênio/toxicidade , Cádmio/metabolismo , Cádmio/toxicidade , Cromo/metabolismo , Cromo/toxicidade , Cobalto/toxicidade , Dano ao DNA , Água Potável/metabolismo , Brânquias , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
5.
Neurotoxicology ; 87: 219-230, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687775

RESUMO

Galaxolide and tonalide are well-known polycyclic musks whose intensive use without limitations in numerous cleaning, hygiene, and personal care products has resulted in widespread direct human exposure via absorption, inhalation, and oral ingestion. Latest data shows that long-term, low-dose exposure to toxic chemicals can induce unpredictable harmful effects in a variety of living systems, however, interactions between synthetic musks and brain tumours remain largely unexplored. Glioblastoma (GB) accounts for nearly half of all tumours of the central nervous system and is characterized by very poor prognosis. The aims of this study were (1) to investigate the potential effect of long-term (20-generation) single and combined application of galaxolide and tonalide at sub-lethal doses (5-2.5 u M) on the angiogenesis, invasion, and migration of human U87 cells or tumour spheroids, and (2) to explore the underlying molecular mechanisms. Random amplified polymorphic DNA assays revealed significant DNA damage and increased total mutation load in galaxolide- and/or tonalide-treated U87 cells. In those same groups, we also detected remarkable tumour spheroid invasion and up-regulation of both HIF1-α/VEGF/MMP9 and IL6/JAK2/STAT3 signals, known to have important roles in hypoxia-related angiogenesis and/or proliferation. Prolonged musk treatment further altered angio-miRNA expression in a manner consistent with poor prognosis in GB. We also detected significant over-expression of the genes Slug, Snail, ZEB1, and Vimentin, which are biomarkers of epithelial to mesenchymal transition. In addition, matrigel, transwell, and wound healing assays clearly showed that long-term sub-lethal exposure to galaxolide and/or tonalide induced invasion and migration proposing a high metastatic potential. Our results suggest that assessing expression of HIF-1a, VEGF, STAT3, and the miR-17-92 cluster in biopsy samples of GB patients who have a history of possible long-term exposure to galaxolide or tonalide could be beneficial for deciding a therapy regime. Additionally, we recommend that extensively-used hygiene and cleaning materials be selected from synthetic musk-free products, especially when used in palliative care processes for GB patients.


Assuntos
Benzopiranos/toxicidade , Carcinógenos/toxicidade , Glioblastoma/induzido quimicamente , Tetra-Hidronaftalenos/toxicidade , Benzopiranos/administração & dosagem , Carcinógenos/administração & dosagem , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Esferoides Celulares/efeitos dos fármacos , Tetra-Hidronaftalenos/administração & dosagem
6.
Tissue Cell ; 73: 101617, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34418770

RESUMO

Micro-RNA (miRNA)-based regulation of hypoxia, angiogenesis and tumour growth provides promising targets for effective therapy in malignant glioblastoma multiforme (GBM). Accumulating evidence suggests a potential role of melatonin in miRNA expression in cancer cells. Despite these findings, the melatonin-miRNA interaction in GBM and the effect of this interaction on GBM tumour development and invasion are not clearly understood. The aim of the present study was to evaluate the effects of melatonin on human GBM tumour spheroid tumorigenesis and invasion in vitro, and to analyse the interaction between 36 angio-miRNAs and the HIF1/VEGF/MMP9 axis, which is known to be associated with the antitumour effect of melatonin. We found that melatonin is able to selectively induce cell death in single-layer U87-MG cells (a GBM cell line) in a dose- and time-dependent manner, as characterized by MTT assay. The use of tumour spheroids and a Matrigel invasion assay revealed that melatonin impairs tumorigenesis, and it significantly reduced both the tumour spheroid area and invasion rate, especially at the 0.5 mM and 1 mM concentrations. This inhibition was accompanied by strong reductions in hypoxia-inducible factor 1-α (HIF1-α) and vascular endothelial growth factor (VEGF) gene expression and protein levels in GBM tumour spheroids. In addition, melatonin significantly reduced the relative gene expression and protein levels of matrix metalloproteinase-9 (MMP-9). This study revealed that six differentially expressed angio-miRs (miR-15b, miR-18a-5p, miR-23a-3p, miR-92a-3p, miR-130a-5p, miR-200b-3p) may play important roles in GBM tumorigenesis and invasion, and all respond to melatonin therapy. Our results suggest that melatonin inhibits tumorigenesis and invasion of human GBM tumour spheroids, possibly by suppressing HIF1-α/VEGF/MMP9 signalling via regulation of angio-miRNAs.


Assuntos
Carcinogênese/genética , Glioblastoma/genética , Glioblastoma/patologia , Melatonina/farmacologia , MicroRNAs/metabolismo , Esferoides Celulares/patologia , Neoplasias Encefálicas/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/genética , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/metabolismo , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Toxicol In Vitro ; 75: 105191, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33962019

RESUMO

Diabetic macular edema (DME) is a leading cause of blindness in diabetic retinopathy. Prolonged hyperglycemia plus hypoxia contributes to DME pathogenesis. Retinal pigmented epithelial cells comprise the outer blood-retinal barrier and are essential for maintaining physiological functioning of the retina. Melatonin acts as an antioxidant and regulator of mitochondrial bioenergetics and has a protective effect against ocular diseases. However, the role of mitochondrial dysfunction and the therapeutic potential of melatonin in DME remain largely unexplored. Here, we used an in vitro model of DME to investigate blood-retinal barrier integrity and permeability, angiogenesis, mitochondrial dynamics, and apoptosis signaling to evaluate the potential protective efficacy of melatonin in DME. We found that melatonin prevents cell hyper-permeability and outer barrier breakdown by reducing HIF-1α, HIF-1ß and VEGF and VEGF receptor gene expression. In addition, melatonin reduced the expression of genes involved in mitochondrial fission (DRP1, hFis1, MIEF2, MFF), mitophagy (PINK, BNip3, NIX), and increased the expression of genes involved in mitochondrial biogenesis (PGC-1α, NRF2, PPAR-γ) to maintain mitochondrial homeostasis. Moreover, melatonin prevented apoptosis of retinal pigmented epithelial cells. Our results suggest that mitochondrial dysfunction may be involved in DME pathology, and melatonin may have therapeutic value in DME, by targeting signaling in mitochondria.


Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Hipóxia Celular , Retinopatia Diabética , Edema Macular , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Glucose , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
8.
Connect Tissue Res ; 62(2): 215-225, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31594391

RESUMO

Aim of the study: Generalized joint hypermobility (GJH) is a common feature of almost all Ehlers-Danlos syndrome (EDS) types; however, its genetic basis remains unclear. Therefore, it is crucial to distinguish the genetic basis of GJH from other connective tissue disorders, including the different subtypes of EDS. The aim of this study was to determine the blood EDS-related gene expressions and serum element levels in GJH and reveal their predictive characteristics and correlations with the Beighton score. Materials and Methods: A total of 39 women aged 18-23 years with GJH and 38 age- and sex-matched controls were included in the study. Inductively coupled plasma mass spectrometry was used to analyze the serum levels of zinc (Zn), strontium (Sr), and lithium (Li). The relative expression levels of the EDS-related genes were determined using quantitative real-time polymerase chain reaction (PCR). Results: Our results showed that women with GJH possessed significantly lower Li and higher Zn and Sr levels than the controls. In addition, the gene expressions of TNXB and SLC39A13 were significantly higher, whereas those of COL1A1, COL1A2, COL5A1, FKBP14, and DSE were lower in the GJH group. Pearson correlation analyses revealed a strong negative correlation between the Beighton score and B4GALT7, FKBP14, COL1A1, and Li. However, a significant positive correlation was noted between the Beighton score and SLC39A13, TNXB, Zn, Sr, and B3GALT6. Conclusion: Our findings provide valuable basal levels for conducting gene function analysis of joint hypermobility-related connective tissue disorders.


Assuntos
Doenças do Tecido Conjuntivo , Síndrome de Ehlers-Danlos , Instabilidade Articular , Adolescente , Estudos de Casos e Controles , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Feminino , Galactosiltransferases , Humanos , Instabilidade Articular/genética , Lítio , Peptidilprolil Isomerase , Estrôncio , Adulto Jovem , Zinco
9.
Biochem Genet ; 59(1): 159-184, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32979141

RESUMO

Currently, combination therapy is considered the most effective solution for a selective chemotherapeutic effect in the treatment of colon cancer. This study investigated the death of both colon cancer HT29 cells and healthy vascular smooth muscle TG-Ha-VSMC cells (VSMCs) induced by naringin combined with endoplasmic reticulum (ER) stress and NF-κB inhibition. Naringin combined with tunicamycin and BAY 11-7082 suppressed the proliferation of HT29 cells in a dose-dependent manner and induced particularly apoptotic death without significantly affecting healthy VSMCs according to Annexin V/PI staining and AO/EB staining analyses. Insufficient antioxidant defense and heat shock response as well as excessive ROS generation were observed in HT29 cells following combination therapy. Quantitative real-time PCR and western blot analysis demonstrated that drug combination-induced mitochondrial apoptosis was activated through the ROS-mediated PERK/eIF2α/ATF4/CHOP pathway. Additionally, naringin combination significantly reduced the sXBP expression induced by tunicamycin+BAY 11-7082 in a dose-dependent manner. In conclusion, this study found that naringin combined with tunicamycin+BAY 11-7082 efficiently induced apoptotic cell death in HT29 colon cancer cells via oxidative stress and the PERK/eIF2α/ATF4/CHOP pathway, suggesting that naringin combined with tunicamycin plus BAY 11-7082 could be a new combination therapy strategy for effective colon cancer treatment with minimal side effects on healthy cells.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Flavanonas/farmacologia , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Estresse Oxidativo , Transdução de Sinais , Fator 4 Ativador da Transcrição/metabolismo , Antioxidantes/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias do Colo/tratamento farmacológico , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Flavanonas/administração & dosagem , Células HT29 , Humanos , Mitocôndrias/metabolismo , Músculo Liso Vascular/citologia , Subunidade p50 de NF-kappa B/metabolismo , Nitrilas/farmacologia , Espécies Reativas de Oxigênio , Sulfonas/farmacologia , Fator de Transcrição CHOP/metabolismo , Tunicamicina/administração & dosagem , eIF-2 Quinase/metabolismo
10.
Ecotoxicol Environ Saf ; 202: 110940, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800223

RESUMO

Recent evidence indicates that chronic, low-dose exposure to mixtures of pesticides can cause adverse responses in a variety of cells, tissues and organs, although interactions between pesticides circulating in the blood and cancer cells remain largely unexplored. The aim of this study was to investigate the potential of a mixture of four pesticides to induce multidrug resistance against the chemotherapeutic agents cisplatin, 5-fluorouracil and temozolomide in the human U87 glioblastoma cell line, and to explore the molecular mechanisms underlying this resistance. We found that the repeated administration of the pesticide mixture (containing the insecticides chlorpyrifos-ethyl and deltamethrin, the fungicide metiram, and the herbicide glyphosate) induced a strong drug resistance in U87 cells. The resistance was durable and transferred to subsequent cell generations. In addition, we detected a significant over-expression of the ATP-binding cassette (ABC) membrane transporters P-gp/ABCB1 and BRCP/ABCG2 as well as a glutathione-S-transferase (GST)/M1-type cellular detoxification function, known to have important roles in multidrug resistance, thus providing molecular support for the acquired multidrug resistance phenotype and shedding light on the mechanism of resistance. We further determined that there was lower mortality in the resistant brain tumor cells and that the mitochondrial apoptosis pathway was activated at a lower rate after chemotherapy compared to non-resistant control cells. In addition, multidrug-resistant cells were found to have both higher motility and wound-healing properties, suggesting a greater metastatic potential. Our results suggest that the investigation of P-gp, BRCP and GST/M1 multidrug resistance gene expression and/or protein levels in biopsy specimens of brain tumor patients who were at risk of pesticide exposure could be beneficial in determining chemotherapy dose and prolonging patient survival.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Praguicidas/toxicidade , Testes de Toxicidade Crônica , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacologia
11.
Hypertens Pregnancy ; 39(4): 429-443, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32791955

RESUMO

OBJECTIVE: This study aimed to investigate the effects of melatonin on cardiac oxidative stress and apoptosis in the fetal heart in RUPP rats. METHODS: The fetal heart samples were obtained from melatonin administrated RUPP rats. RESULTS: Our results indicate that preeclampsia exacerbated by melatonin deficiency triggers hypoxic conditions, both mis/un-folded protein response, oxidative stress-induced DNA damage and apoptosis. Melatonin treatment provided significant therapeutic effects on fetal hearts via regulating all these stress response at cellular and molecular levels. CONCLUSION: Melatonin may be considered as a potential molecule for development of preventive strategies to reduce the PE induced risk of cardiovascular diseases in offspring.


Assuntos
Apoptose/efeitos dos fármacos , Coração Fetal/efeitos dos fármacos , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Pressão Sanguínea/fisiologia , Feminino , Coração Fetal/metabolismo , Pinealectomia , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Ratos , Ratos Wistar , Útero/irrigação sanguínea
12.
World Neurosurg ; 137: e506-e516, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059970

RESUMO

BACKGROUND: Although previous studies have reported the expression of JAK1, STAT3, and phosphorylated STAT3 in hypertrophied ligamentum flavum (LF), the role of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway in hypertrophied LF has not been fully elucidated. The aim of this study was to identify the important JAK/STAT gene expression patterns of the 3 main receptors involved in this pathway: interferon (IFN)-γ receptor (IFN-γR), IFN-α receptor (IFNAR), and interleukin (IL)-6 receptor (IL-6R). METHODS: The human LF specimens were obtained from 28 patients who underwent lumbar spine surgery for either degenerative lumbar canal stenosis (DLCS) (n = 28) or lumbar disc herniation (LDH) (n = 20). In this design, patients with LDH served as the control group. The degree of fibrosis was demonstrated by Masson's trichrome staining. The location and expression profiling of the JAK/STAT pathway were analyzed by quantitative real-time polymerase chain reaction and Western blotting. The thickness of the LF was measured with axial T1-weighted magnetic resonance imaging. RESULTS: The most severe fibrotic changes were on the dorsal side of the LF. IL-6 and IFN-I expression levels were significantly increased on the dorsal side of the LF. While expression levels of IL-6R and IFNAR on the dural and dorsal side were significantly higher in the DLCS samples, IFN-γR and endothelial epidermal growth factor receptor in LF samples showed a significant increase only on the dorsal side. JAK/STAT genes were significantly expressed, especially on the dorsal side. CONCLUSIONS: Our data suggest that IFNAR- and IL-6R-dependent JAK/STAT signaling pathways may be significant targets in drug development strategies for the treatment of LF hypertrophy.


Assuntos
Janus Quinases/metabolismo , Ligamento Amarelo/metabolismo , Vértebras Lombares/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hipertrofia/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/cirurgia , Ligamento Amarelo/patologia , Ligamento Amarelo/cirurgia , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Receptor de Interferon alfa e beta/metabolismo , Receptores de Interferon/metabolismo , Receptores de Interleucina-6/metabolismo , Estenose Espinal/metabolismo , Estenose Espinal/cirurgia , Receptor de Interferon gama
13.
Cardiovasc Toxicol ; 20(2): 139-154, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31278615

RESUMO

Systemic chemotherapy-mediated cell toxicity is a major risk factor for cardiovascular disease and atherosclerosis. Life-threatening acute events of the FOLFIRI (irinotecan, folinic acid and 5-fluorouracil) regimen are mainly due to DNA damage induced by antimetabolite and topoisomerase inhibition effects. However, the role of human aortic smooth muscle cells (HaVSMCs) in this process and the mechanisms of oxidative stress, DNA and protein damage and apoptosis have not been investigated. Therefore, the effects of curcumin and quercetin on HaVSMC survival in the generation of molecular and cellular toxicity by FOLFIRI treatment and the involvement of vital cellular signalling pathways were investigated. We analysed both FOLFIRI toxicity and the therapeutic potential of quercetin and curcumin in terms of HaVSMC damage using molecular probe and florescence staining, Random Amplified Polymorphic DNA (RAPD), qRT-PCR and Western blot assays. Our study presents two preliminary findings: (a) in HaVSMCs, FOLFIRI treatment significantly induces oxidative damage to both DNA and protein, leading to a dramatic increase in caspase-dependent apoptotic death through P53-mediated Caspase3-dependent mitochondrial apoptosis, and results in TNF-α/Caspase8-mediated necrotic death, and (b) flavonoids not only regulate the expression of genes encoding antioxidant enzymes and increase DNA damage but also limit programmed and necrotic cell death processes in HaVSMCs. Our results clearly indicate the potential for curcumin and, particularly, quercetin as preventative chemotherapeutic interventions for cardiovascular toxicity induced by the FOLFIRI regime in HaVSMCs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Camptotecina/análogos & derivados , Curcumina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Quercetina/farmacologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Camptotecina/toxicidade , Células Cultivadas , Dano ao DNA , Fluoruracila/toxicidade , Humanos , Leucovorina/toxicidade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Necrose , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
14.
Turk Neurosurg ; 30(2): 182-189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31452174

RESUMO

AIM: To determine the interaction between ruxolitinib, JAK/STAT signalling, and two angio-microRNAs (miRs) to expose potential target molecules in the inhibition of glioblastoma invasion. MATERIAL AND METHODS: The invasion properties of glioblastoma were analyzed using a cancer cell spheroid invasion assay. Following treatment of 195 nM ruxolitinib, the relative expression levels of miR-17 and miR-20a and genes of IL-6/JAK/STAT3 receptor signaling belonging to the JAK/STAT pathway were measured by qRT-PCR in treated and untreated three-dimensional tumor spheres of U87 cells. RESULTS: Our results indicated that a therapeutic dose of ruxolitinib (195 nM) significantly increased miR-17 and miR-20a expression. Ruxolitinib treatment resulted in the production of IL-6 and active formation of IL-6 receptor complex for the subsequent activation of the IL-6R/JAK2/STAT3 axis. However, ruxolitinib treatment significantly decreased the expression of JAK2 and PI3K. Pearson correlation analyses revealed a strong negative correlation of miR-17 with JAK2, STAT3, and PI3K expressions, and also miR-20a has a negative correlation with expression levels of JAK2 and PI3K. The only positive correlation was found to be between miR-20a and IL-6, gp130 expressions. CONCLUSION: The specific JAK2 inhibitor ruxolitinib plays an important role in glioblastoma angiogenesis biology via inhibiting IL-6 receptor-dependent JAK/STAT signaling. Additionally, both miR-17a-3p and miR-20a overexpression induced by ruxolitinib treatment may be playing a major role in downregulated JAK2, STAT3, and PI3K proteins. Our results suggest that miR-17-3p and miR-20a-5p may serve as new therapeutic targets for the treatment of glioblastoma.


Assuntos
Glioblastoma/patologia , Janus Quinase 2/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , Pirazóis/farmacologia , Fator de Transcrição STAT3/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Janus Quinase 2/metabolismo , MicroRNAs/biossíntese , Nitrilas , Pirimidinas , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Curr Eye Res ; 44(10): 1157-1169, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31090463

RESUMO

Aim: The aim of this study was to investigate the possible mechanisms of ocular damage induced by pinealectomy (PNX) and preeclampsia (PE), and to determine the cellular and molecular effects of melatonin treatment on oxidative stress, DNA damage, molecular chaperone responses, induction of apoptosis and angiogenesis in the fetal eye of both PNX and PNX+PE animals. Material and Methods: We analysed therapeutic potential of melatonin on fetal eye damage in PNX and PNX+PE animals using Malondialdehyde (MDA), Random Amplified Polymorphic DNA (RAPD), qRT-PCR and Western blot assays. Results: Our study presents three preliminary findings: (a) in fetal eye tissues, PNX and PNX+PE significantly induce oxidative damage to both DNA and protein contents, leading to a dramatic increase in caspase-dependent apoptotic signalling in both mitochondrial and death receptor pathways; (b) the same conditions trigger hypoxia biomarkers in addition to significant overexpression of HIF1-α, HIF1-ß, MMP9 and VEGF genes in the fetal eye; (c) finally, melatonin regulates not only the expression of genes encoding antioxidant enzymes and increase in DNA damage as well as lipid peroxidation but also limits programmed cell death processes in the fetal eye of PNX and PNX+PE animals . Furthermore, melatonin can relatively modulate genes in the HIF1 family, TNF-α and VEGF, thus acting as a direct anti-angiogenic molecule. In conclusion, both PNX and PNX+PE induce ocular damage at both cellular and molecular levels in fetal eye tissue of rats. Conclusion: Our results clearly indicate the potential of melatonin as a preventative therapeutic intervention for fetal ocular damage triggered by both PNX and PNX+PE.


Assuntos
Apoptose , Dano ao DNA , Olho/irrigação sanguínea , Melatonina/deficiência , Neovascularização Patológica/patologia , Estresse Oxidativo/fisiologia , Pré-Eclâmpsia/fisiopatologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Western Blotting , Olho/embriologia , Feminino , Regulação da Expressão Gênica/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Metaloproteinase 9 da Matriz/genética , Melatonina/fisiologia , Neovascularização Patológica/metabolismo , Pinealectomia , Gravidez , Técnica de Amplificação ao Acaso de DNA Polimórfico , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/genética
16.
Biomed Rep ; 0(0): 1-10, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30842884

RESUMO

Athletes misuse recombinant human growth hormone (r-hGH) to enhance their performance. Although r-hGH is known to increase cardiac hypertrophy, the underlying molecular mechanism remains unclear. The aim of the present study was to investigate the role of r-hGH in cardiac intracellular signaling pathways and of miR-21 and miR-133 expression in rat hearts during exercise. A total of 36 adult male Sprague-Dawley rats were divided into sedentary control (SC, n=9), swimming exercise (SE, n=8), r-hGH (GH, n=10) and swimming exercise plus r-hGH (SE-GH, n=9) groups. The exercise groups completed a 1-h swimming exercise 5 times a week for 8 weeks. Subcutaneous r-hGH was administered as 0.3 mg/kg/day. Phosphoinositide-3-kinase (PI3K), serine/threonine protein kinase 1 (AKT1), extracellular signal-regulated kinase (ERK), microRNA (miR)-21 and miR-133 expression was evaluated in ventricular muscle by real-time quantitative polymerase chain reaction. Protein expression of PI3K, AKT1, ERK and mechanistic target of rapamycin (mTOR) was also assessed by immunohistochemistry. Statistical differences were analyzed by two-way ANOVA. PI3K and AKT1 expression and the gene and protein levels was notably increased in the SE-GH group compared with in SC ventricular tissues (P<0.05). mTOR protein expression was higher in the GH, SE and SE-GH groups compared with in the SC group (P<0.05, <0.05 and <0.001, respectively). ERK gene/protein expression was similar across all groups. miR-21 and miR-133 levels in ventricular muscle were higher in the SE and GH groups than those in the SC group. In summary, growth hormone application coupled with swimming exercise appeared to affect the PI3K/AKT/mTOR signaling pathway in the left ventricular tissue of rats; however, ERK signaling pathway appeared inactive in physiological left ventricular hypertrophy caused by swimming and GH administration over 8 weeks. Furthermore, GH treatment resulted in increased miR-21 and miR-133 expression. Future study by our group will aim to assess the effects of higher dose GH treatment.

17.
Appl Physiol Nutr Metab ; 44(2): 153-163, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30058356

RESUMO

The aim of this study was to explain the possible mechanisms by which melatonin deficiency results in cardiovascular injury and to investigate the effects of melatonin administration on important signalling pathways and element equilibrium in the thoracic aorta (TA). For this purpose, we analysed the cellular and molecular effects of melatonin deficiency or administration on oxidative stress, DNA damage, molecular chaperone response, and apoptosis induction in TA tissues of pinealectomised rats using ELISA, RAPD, qRT-PCR, and Western blot assays. The results showed that melatonin deficiency led to an imbalance in essential element levels, unfolded or misfolded proteins, increased lipid peroxidation, and selectively induced caspase-dependent apoptosis in TA tissues without significantly affecting the Bcl-2/BAX ratio (2.28 in pinealectomised rats, 2.73 in pinealectomised rats treated with melatonin). In pinealectomised rats, the genomic template stability (80.22%) was disrupted by the significantly increased oxidative stress, and heat shock protein 70 (20.96-fold), TNF-α (1.73-fold), caspase-8 (2.03-fold), and caspase-3 (2.87-fold) were markedly overexpressed compared with the sham group. Melatonin treatment was protective against apoptosis and inhibited oxidative damage. In addition, melatonin increased the survivin level and improved the regulation of element equilibrium in TA tissues. The results of the study indicate that melatonin deficiency induces TNF-α-related extrinsic apoptosis signals and that the administration of pharmacological doses of melatonin attenuates cardiovascular toxicity by regulating the increase in the rate of apoptosis caused by melatonin deficiency in TA tissue of Sprague-Dawley rats.


Assuntos
Aorta Torácica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Caspases/fisiologia , Melatonina/deficiência , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Glândula Pineal/fisiologia , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Animais , Aorta Torácica/fisiologia , Genômica , Proteínas de Choque Térmico HSP70/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Deficiências na Proteostase , Ratos , Ratos Sprague-Dawley
18.
Arch Environ Contam Toxicol ; 75(4): 530-544, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30003277

RESUMO

Although many studies related the toxic effects of pesticides on agricultural workers, little research has been done about agricultural area residents. The purpose of this work was to monitor the presence of pesticides, as well as their genotoxic and cytotoxic potential, in humans with blood samples collected from control and intensive agricultural areas in the Thrace region. Pesticide accumulations were determined by LC-MS/MS. Cytotoxicity and genotoxicity were analyzed by comet assay, and the effect of pesticide accumulation on oxidative stress, DNA repair, and molecular chaperone response were analyzed by qRT-PCR assays in the human blood samples. The agricultural area residents had a significantly higher concentration of pesticides than those in the control area at all three sampling times, and the total pesticide amounts were 4.3 and 10 times significantly higher in blood sampled in the pesticide use period (August 2015 and 2016, respectively) than in the nonuse period (November 2015). The results showed that the pesticide level in blood during the use period led to oxidative stress, DNA damage (mean comet length and % tail DNA), and unfolded/misfolded protein response. Particularly, in pesticide use season, difference between these parameters was found statistically significant with comparison to control. Our results indicate that individuals residing around a monoculture rice farming area comprise an at-risk group as a result of increased genotoxicity evidenced in human blood. We suggest that biological monitoring efforts should be used to control nonoccupational exposures to pesticides and thus safeguard the health of agricultural area residents.


Assuntos
Dano ao DNA , Exposição Ambiental/análise , Poluentes Ambientais/sangue , Fazendas , Mutagênicos/toxicidade , Praguicidas/sangue , Ensaio Cometa , Reparo do DNA/genética , Poluentes Ambientais/toxicidade , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Praguicidas/toxicidade , Fatores de Risco , Turquia
19.
Chem Biodivers ; 15(7): e1800016, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29766645

RESUMO

Naringenin is a naturally occurring flavonoid and due to its broad spectrum of biological activities, including anticancer properties, has attracted scientific attention in recent years. To contribute to these studies, we synthesized some new (±)-naringenin cyclic aminoethyl derivatives, analyzed the cytotoxic and anti-proliferative properties of them via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and mitochondrial apoptosis signaling response and gene expressions belong to caspase-3 depended apoptosis as biomarkers in both healthy and cancer cell lines. Our results suggest that some of our naringenin derivatives are potential anticancer agents with a selective death potential and targeting properties for mitochondrial apoptosis signaling against at least human cervix and breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Flavanonas/síntese química , Flavanonas/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
20.
Cutan Ocul Toxicol ; 37(3): 291-304, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29606027

RESUMO

AIM: Combination therapies of cisplatin with 5-FU (PF) are an effective solution and have been widely used for the treatment of various categories of cancer including anal, gastrointestinal, and oral cancer, as well as head and neck tumors. The effects of combined PF treatment on vital intracellular signalling pathways in nontargeted cells remain unclear. The aim of this study is to explain the possible mechanisms by which combined PF treatment results in retinal toxicity and to investigate the effects of PF on important vital signalling pathways in ARPE 19 retinal pigmented epithelial cells. MATERIALS AND METHODS: We analysed the cellular and molecular effects of PF on cell viability, oxidative stress, gene repair response, and induction of apoptosis in ARPE 19 cells using molecular probe fluorescent staining, cell cytometer, RAPD, qRT-PCR, and western blot assays. RESULTS: We determined that PF causes excessive generation of reactive oxygen species (ROS) and prevents ROS scavenging by suppressing antioxidant systems. We found induction of DNA damage, particularly mismatch and double strand break repair, in ARPE 19 cells treated with PF. In this study, PF also induced both the intrinsic apoptosis pathway and death receptor signalling in ARPE 19 cells. CONCLUSIONS: Our data proved that PF causes cytotoxicity and genotoxicity, at both the cellular and molecular levels, in ARPE 19 cells following particularly prolonged treatment (48 h). Additionally, our results suggest key molecular signals for prevention strategies that can be developed to reduce the severe side effects of PF chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias/tratamento farmacológico , Receptores de Morte Celular/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Fluoruracila/efeitos adversos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...