Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 165: 156167, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934508

RESUMO

Suppressor Of Cytokine Signaling (SOCS) 1 is a critical negative regulator of cytokine signaling and required to protect against an excessive inflammatory response. Genetic deletion of Socs1 results in unrestrained cytokine signaling and neonatal lethality, characterised by an inflammatory immune infiltrate in multiple organs. Overexpression and structural studies have suggested that the SOCS1 kinase inhibitory region (KIR) and Src homology 2 (SH2) domain are important for interaction with and inhibition of the receptor-associated JAK1, JAK2 and TYK2 tyrosine kinases, which initiate downstream signaling. To investigate the role of the KIR and SH2 domain in SOCS1 function, we independently mutated key conserved residues in each domain and analysed the impact on cytokine signaling, and the in vivo impact on SOCS1 function. Mutation of the SOCS1-KIR or SH2 domain had no impact on the integrity of the SOCS box complex, however, mutation within the phosphotyrosine binding pocket of the SOCS1-SH2 domain specifically disrupted SOCS1 interaction with phosphorylated JAK1. In contrast, mutation of the KIR did not affect the interaction with JAK1, but did prevent SOCS1 inhibition of JAK1 autophosphorylation. In human and mouse cell lines, both mutants impacted the ability of SOCS1 to restrain cytokine signaling, and crucially, Socs1-R105A and Socs1-F59A mice displayed a neonatal lethality and excessive inflammatory phenotype similar to Socs1-null mice. This study defines a critical and non-redundant role for both the KIR and SH2 domain in endogenous SOCS1 function.


Assuntos
Citocinas , Proteína 1 Supressora da Sinalização de Citocina , Domínios de Homologia de src , Animais , Humanos , Camundongos , Citocinas/metabolismo , Fosforilação , Transdução de Sinais/fisiologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , TYK2 Quinase/metabolismo
2.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36648336

RESUMO

The nucleoporin (NUP) ELYS, encoded by AHCTF1, is a large multifunctional protein with essential roles in nuclear pore assembly and mitosis. Using both larval and adult zebrafish models of hepatocellular carcinoma (HCC), in which the expression of an inducible mutant kras transgene (krasG12V) drives hepatocyte-specific hyperplasia and liver enlargement, we show that reducing ahctf1 gene dosage by 50% markedly decreases liver volume, while non-hyperplastic tissues are unaffected. We demonstrate that in the context of cancer, ahctf1 heterozygosity impairs nuclear pore formation, mitotic spindle assembly, and chromosome segregation, leading to DNA damage and activation of a Tp53-dependent transcriptional programme that induces cell death and cell cycle arrest. Heterozygous expression of both ahctf1 and ranbp2 (encoding a second nucleoporin), or treatment of heterozygous ahctf1 larvae with the nucleocytoplasmic transport inhibitor, Selinexor, completely blocks krasG12V-driven hepatocyte hyperplasia. Gene expression analysis of patient samples in the liver hepatocellular carcinoma (LIHC) dataset in The Cancer Genome Atlas shows that high expression of one or more of the transcripts encoding the 10 components of the NUP107-160 subcomplex, which includes AHCTF1, is positively correlated with worse overall survival. These results provide a strong and feasible rationale for the development of novel cancer therapeutics that target ELYS function and suggest potential avenues for effective combinatorial treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Hiperplasia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Biosci Rep ; 42(12)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36398696

RESUMO

Suppressor of cytokine signaling (SOCS) 2 is the critical negative regulator of growth hormone (GH) and prolactin signaling. Mice lacking SOCS2 display gigantism with increased body weight and length, and an enhanced response to GH treatment. Here, we characterized mice carrying a germ-line R96C mutation within the SOCS2-SH2 domain, which disrupts the ability of SOCS2 to interact with tyrosine-phosphorylated targets. Socs2R96C/R96C mice displayed a similar increase in growth as previously observed in SOCS2 null (Socs2-/-) mice, with a proportional increase in body and organ weight, and bone length. Embryonic fibroblasts isolated from Socs2R96C/R96C and Socs2-/- mice also showed a comparable increase in phosphorylation of STAT5 following GH stimulation, indicating the critical role of phosphotyrosine binding in SOCS2 function.


Assuntos
Hormônio do Crescimento , Fosfotirosina , Proteínas Supressoras da Sinalização de Citocina , Animais , Camundongos , Hormônio do Crescimento/metabolismo , Fosfotirosina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Camundongos Mutantes , Transdução de Sinais , Mutação em Linhagem Germinativa
4.
Nucleic Acids Res ; 49(6): 3524-3545, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660780

RESUMO

Vertebrate genomes contain major (>99.5%) and minor (<0.5%) introns that are spliced by the major and minor spliceosomes, respectively. Major intron splicing follows the exon-definition model, whereby major spliceosome components first assemble across exons. However, since most genes with minor introns predominately consist of major introns, formation of exon-definition complexes in these genes would require interaction between the major and minor spliceosomes. Here, we report that minor spliceosome protein U11-59K binds to the major spliceosome U2AF complex, thereby supporting a model in which the minor spliceosome interacts with the major spliceosome across an exon to regulate the splicing of minor introns. Inhibition of minor spliceosome snRNAs and U11-59K disrupted exon-bridging interactions, leading to exon skipping by the major spliceosome. The resulting aberrant isoforms contained a premature stop codon, yet were not subjected to nonsense-mediated decay, but rather bound to polysomes. Importantly, we detected elevated levels of these alternatively spliced transcripts in individuals with minor spliceosome-related diseases such as Roifman syndrome, Lowry-Wood syndrome and early-onset cerebellar ataxia. In all, we report that the minor spliceosome informs splicing by the major spliceosome through exon-definition interactions and show that minor spliceosome inhibition results in aberrant alternative splicing in disease.


Assuntos
Processamento Alternativo , Éxons , Íntrons , Spliceossomos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/genética , Células Cultivadas , Ataxia Cerebelar/genética , Transtornos do Crescimento/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Camundongos , Microcefalia/genética , Degradação do RNAm Mediada por Códon sem Sentido , Osteocondrodisplasias/genética , Polirribossomos/metabolismo , Doenças da Imunodeficiência Primária/genética , RNA Nuclear Pequeno/antagonistas & inibidores , Doenças Retinianas/genética , Fatores de Transcrição/metabolismo
5.
RNA ; 24(12): 1856-1870, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30254136

RESUMO

Splicing is an essential step in eukaryotic gene expression. While the majority of introns is excised by the U2-dependent, or major class, spliceosome, the appropriate expression of a very small subset of genes depends on U12-dependent, or minor class, splicing. The U11/U12 65K protein (hereafter 65K), encoded by RNPC3, is one of seven proteins that are unique to the U12-dependent spliceosome, and previous studies including our own have established that it plays a role in plant and vertebrate development. To pinpoint the impact of 65K loss during mammalian development and in adulthood, we generated germline and conditional Rnpc3-deficient mice. Homozygous Rnpc3-/- embryos died prior to blastocyst implantation, whereas Rnpc3+/- mice were born at the expected frequency, achieved sexual maturity, and exhibited a completely normal lifespan. Systemic recombination of conditional Rnpc3 alleles in adult (Rnpc3lox/lox ) mice caused rapid weight loss, leukopenia, and degeneration of the epithelial lining of the entire gastrointestinal tract, the latter due to increased cell death and a reduction in cell proliferation. Accompanying this, we observed a loss of both 65K and the pro-proliferative phospho-ERK1/2 proteins from the stem/progenitor cells at the base of intestinal crypts. RT-PCR analysis of RNA extracted from purified preparations of intestinal epithelial cells with recombined Rnpc3lox alleles revealed increased frequency of U12-type intron retention in all transcripts tested. Our study, using a novel conditional mouse model of Rnpc3 deficiency, establishes that U12-dependent splicing is not only important during development but is indispensable throughout life.


Assuntos
Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Alelos , Animais , Trato Gastrointestinal/metabolismo , Humanos , Íntrons/genética , Camundongos , RNA Nuclear Pequeno/síntese química , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/deficiência , Spliceossomos/química , Spliceossomos/genética
6.
Nature ; 560(7717): 253-257, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069049

RESUMO

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Assuntos
Benzenossulfonatos/farmacologia , Senescência Celular/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Hidrazinas/farmacologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Sulfonamidas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Benzenossulfonatos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desenvolvimento de Medicamentos , Fibroblastos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/química , Histonas/metabolismo , Hidrazinas/uso terapêutico , Linfoma/enzimologia , Linfoma/genética , Lisina/química , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Sulfonamidas/uso terapêutico
7.
Biol Open ; 5(3): 359-66, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26892237

RESUMO

Here we genetically characterise pelvic finless, a naturally occurring model of hindlimb loss in zebrafish that lacks pelvic fin structures, which are homologous to tetrapod hindlimbs, but displays no other abnormalities. Using a hybrid positional cloning and next generation sequencing approach, we identified mutations in the nuclear localisation signal (NLS) of T-box transcription factor 4 (Tbx4) that impair nuclear localisation of the protein, resulting in altered gene expression patterns during pelvic fin development and the failure of pelvic fin development. Using a TALEN-induced tbx4 knockout allele we confirm that mutations within the Tbx4 NLS (A78V; G79A) are sufficient to disrupt pelvic fin development. By combining histological, genetic, and cellular approaches we show that the hindlimb initiation gene tbx4 has an evolutionarily conserved, essential role in pelvic fin development. In addition, our novel viable model of hindlimb deficiency is likely to facilitate the elucidation of the detailed molecular mechanisms through which Tbx4 functions during pelvic fin and hindlimb development.

8.
PLoS One ; 10(7): e0132987, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207831

RESUMO

During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in cooperation with the loss of the cell polarity regulator, scribbled (scrib). Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK) activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF) domain genes, including chronologically inappropriate morphogenesis (chinmo). chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that EMT-promoting signals in human cancers could similarly utilize networks of these proteins to promote cancer stem cell states.


Assuntos
Carcinogênese/genética , Proteínas de Drosophila/fisiologia , Genes ras/fisiologia , Oncogenes/fisiologia , Receptores Notch/fisiologia , Dedos de Zinco/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Análise em Microsséries , Proteínas Nucleares/química , Proteínas Nucleares/genética , Domínios e Motivos de Interação entre Proteínas/genética
9.
Dis Model Mech ; 8(8): 805-15, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26035389

RESUMO

The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Glycoprotein A33 (GPA33) is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33(-/-) mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33(-/-) mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS) to injure the intestinal epithelium. Gpa33(-/-) mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM) followed by two cycles of DSS. In contrast, Gpa33(-/-) mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33(-/-) mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33(-/-) mice provide a valuable model to study the mechanisms linking intestinal permeability and multiple inflammatory pathologies. Moreover, this model could facilitate preclinical studies aimed at identifying drugs that restore barrier function.


Assuntos
Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Glicoproteínas de Membrana/deficiência , Animais , Antígenos/imunologia , Colite/induzido quimicamente , Colite/complicações , Colite/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Suscetibilidade a Doenças , Alimentos , Tolerância Imunológica/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL
10.
Mech Dev ; 133: 77-90, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24915580

RESUMO

Craniofacial development is a highly conserved process that requires complex interactions between neural crest cells (NCCs) and pharyngeal tissues derived from all three germ layers. Signals emanating from the pharyngeal endoderm drive differentiation of NCCs into craniofacial cartilage, and disruption of this process underpins several human craniofacial defects (CFD). Here, we demonstrate that morpholino (MO)-mediated knockdown in zebrafish of the highly conserved transcription factor grainyhead-like 3 (grhl3), which is selectively expressed in the pharyngeal endoderm, leads to severe hypoplasia of the lower jaw cartilages. Phylogenetic analysis of conserved grhl-binding sites in gene regulatory regions identified endothelin-1 (edn1) as a putative direct grhl3 target gene, and this was confirmed by chromatin precipitation (ChIP) assays in zebrafish embryos. Injection of sub-phenotypic concentrations of MOs targeting both grhl3 and edn1 induced jaw abnormalities, and injection of edn1 mRNA into grhl3-morphants rescued both pharyngeal expression of the downstream effectors of edn1, and jaw cartilage formation. This study sheds new light on the role of endodermal endothelin-1 in vertebrate jaw development, and highlights potential new genetic defects that could underpin human CFD.


Assuntos
Endotelina-1/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sítios de Ligação/genética , Imunoprecipitação da Cromatina , Endotelina-1/metabolismo , Epistasia Genética , Ossos Faciais/crescimento & desenvolvimento , Ossos Faciais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Crista Neural/citologia , Crista Neural/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico , Transdução de Sinais , Crânio/crescimento & desenvolvimento , Crânio/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
11.
Cell Rep ; 7(4): 1009-19, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24813887

RESUMO

N-methyl-2-pyrrolidone (NMP) is a common solvent and drug vehicle. We discovered unexpected antineoplastic and immunomodulatory activity of NMP in a cMYC-driven myeloma model. Coincident to this, NMP was identified as an acetyllysine mimetic and candidate bromodomain ligand. Accordingly, NMP-treated cells demonstrated transcriptional overlap with BET-bromodomain inhibition, including downregulation of cMYC and IRF4. NMP's immunomodulatory activity occurred at sub-BET inhibitory concentrations, and, despite phenotypic similarities to lenalidomide, its antimyeloma activity was independent of the IMiD targets cereblon and Ikaros-1/3. Thus, low-affinity yet broad-spectrum bromodomain inhibition by NMP mediates biologically potent, cereblon-independent immunomodulation and at higher doses targets malignant cells directly via BET antagonism. These data reveal that NMP is a functional acetyllysine mimetic with pleotropic antimyeloma and immunomodulatory activities. Our studies highlight the potential therapeutic benefits of NMP, the consequences of current human NMP exposures, and the need for reassessment of scientific literature where NMP was used as an "inert" drug-delivery vehicle.


Assuntos
Antineoplásicos/farmacologia , Fatores Imunológicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Pirrolidinonas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Proc Natl Acad Sci U S A ; 111(8): 3062-7, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516132

RESUMO

Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we describe a unique zebrafish mutant, caliban (clbn), with arrested development of the digestive organs caused by an ethylnitrosourea-induced recessive lethal point mutation in the rnpc3 [RNA-binding region (RNP1, RRM) containing 3] gene. rnpc3 encodes the zebrafish ortholog of human RNPC3, also known as the U11/U12 di-snRNP 65-kDa protein, a unique component of the U12-type spliceosome. The biochemical impact of the mutation in clbn is the formation of aberrant U11- and U12-containing small nuclear ribonucleoproteins that impair the efficiency of U12-type splicing. Using RNA sequencing and microarrays, we show that multiple genes involved in various steps of mRNA processing, including transcription, splicing, and nuclear export are disrupted in clbn, either through intron retention or differential gene expression. Thus, clbn provides a useful and specific model of aberrant U12-type splicing in vivo. Analysis of its transcriptome reveals efficient mRNA processing as a critical process for the growth and proliferation of cells during vertebrate development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Conformação Proteica , Splicing de RNA/fisiologia , RNA Nuclear Pequeno/química , Proteínas de Ligação a RNA/genética , Spliceossomos/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Intestinos/anormalidades , Fígado/anormalidades , Análise em Microsséries , Dados de Sequência Molecular , Pâncreas/anormalidades , Mutação Puntual/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Spliceossomos/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
13.
PLoS Genet ; 9(7): e1003627, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874226

RESUMO

The capacity of tumour cells to maintain continual overgrowth potential has been linked to the commandeering of normal self-renewal pathways. Using an epithelial cancer model in Drosophila melanogaster, we carried out an overexpression screen for oncogenes capable of cooperating with the loss of the epithelial apico-basal cell polarity regulator, scribbled (scrib), and identified the cell fate regulator, Abrupt, a BTB-zinc finger protein. Abrupt overexpression alone is insufficient to transform cells, but in cooperation with scrib loss of function, Abrupt promotes the formation of massive tumours in the eye/antennal disc. The steroid hormone receptor coactivator, Taiman (a homologue of SRC3/AIB1), is known to associate with Abrupt, and Taiman overexpression also drives tumour formation in cooperation with the loss of Scrib. Expression arrays and ChIP-Seq indicates that Abrupt overexpression represses a large number of genes, including steroid hormone-response genes and multiple cell fate regulators, thereby maintaining cells within an epithelial progenitor-like state. The progenitor-like state is characterised by the failure to express the conserved Eyes absent/Dachshund regulatory complex in the eye disc, and in the antennal disc by the failure to express cell fate regulators that define the temporal elaboration of the appendage along the proximo-distal axis downstream of Distalless. Loss of scrib promotes cooperation with Abrupt through impaired Hippo signalling, which is required and sufficient for cooperative overgrowth with Abrupt, and JNK (Jun kinase) signalling, which is required for tumour cell migration/invasion but not overgrowth. These results thus identify a novel cooperating oncogene, identify mammalian family members of which are also known oncogenes, and demonstrate that epithelial tumours in Drosophila can be characterised by the maintenance of a progenitor-like state.


Assuntos
Carcinogênese , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Sistema de Sinalização das MAP Quinases/genética , Neoplasias Epiteliais e Glandulares/genética , Proteínas Nucleares/genética , Animais , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Neoplasias Oculares/genética , Neoplasias Oculares/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Epiteliais e Glandulares/patologia , Proteínas Nucleares/metabolismo , Proteína Oncogênica p65(gag-jun)/genética , Proteína Oncogênica p65(gag-jun)/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
BMC Dev Biol ; 11: 57, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21955824

RESUMO

BACKGROUND: Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. RESULTS: Here we show in Drosophila that loss of Scribbled (Scrib), a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. CONCLUSIONS: Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue overgrowth, and this is also important for driving cooperative tumor overgrowth with oncogenic Ras-Raf signaling. Whether this is also the case in human cancers now warrants investigation since the cell polarity function of Scrib and its capacity to restrain oncogene-mediated transformation, as well as the tissue growth control function of the Hippo pathway, are conserved in mammals.


Assuntos
Polaridade Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Proliferação de Células , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Células Epiteliais/metabolismo , Olho/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteína Oncogênica p21(ras)/metabolismo , Proteína Quinase C/biossíntese , Transativadores/deficiência , Transativadores/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Asas de Animais/embriologia , Proteínas de Sinalização YAP , Quinases raf/metabolismo
15.
Dev Biol ; 355(2): 381-93, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21570388

RESUMO

A conserved multi-subunit complex (MybMuvB, MMB), regulates transcriptional activity of many different target genes in Drosophila somatic cells. A paralogous complex, tMAC, controls expression of at least 1500 genes in the male germline, and is essential for sperm production. The roles of specific subunits of tMAC, MMB or orthologous complexes in regulating target gene expression are not understood. MMB and orthologous complexes have Lin-52 as a subunit, but Lin-52 did not co-purify with tMAC. We identified wake-up-call (wuc), a lin-52 paralogue, via a physical interaction with the tMAC lin-9-related subunit Aly, and find that Wuc co-localises with known tMAC subunits. We show that wuc, like aly, is required for spermatogenesis. However, despite phenotypic similarities, the role of wuc is very different from that of previously characterised tMAC mutants. Unlike aly, loss of wuc results in only relatively mild defects in testis-specific gene expression. Strikingly, wuc loss of function partially rescues expression of target genes in aly mutant testes. We propose that wuc represses testis-specific gene expression, that this repression is counteracted by aly, and that aly and a testis-specific TF(II)D complex work together to promote high transcriptional activity of spermiogenic genes specifically in primary spermatocytes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Repressoras/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Animais , Western Blotting , Drosophila melanogaster/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Masculino , Análise em Microsséries , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogênese/fisiologia , Técnicas do Sistema de Duplo-Híbrido
16.
Proc Natl Acad Sci U S A ; 106(18): 7491-4, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19380722

RESUMO

The discovery of a set of highly conserved genes implicated in patterning during animal development represents one of the most striking findings from the field of evolutionary developmental biology. Existence of these "developmental toolkit" genes in diverse taxa, however, does not necessarily imply that they always perform the same functions. Here, we demonstrate functional evolution in a major toolkit gene. hedgehog (hh) encodes a protein that undergoes autocatalytic cleavage, releasing a signaling molecule involved in major developmental processes, notably neural patterning. We find that the hh gene of a colonial pterobranch hemichordate, Rhabdopleura compacta, is expressed in a dramatically different pattern to its ortholog in a harrimaniid enteropneust hemichordate, Saccoglossus kowalevskii. These represent two of the three major hemichordate lineages, the third being the indirect developing ptychoderid enteropneusts. We also show that the normally well-conserved amino acid sequence of the autoproteolytic cleavage site has a derived change in S. kowalevskii. Using ectopic expression in Drosophila, we find that this amino acid substitution reduces the efficiency of Hh autocatalytic cleavage and its signaling function. We conclude that the Hh sequence and expression in S. kowalevskii represent the derived state for deuterostomes, and we argue that functional evolution accompanied secondary reduction of the central nervous system in harrimaniids.


Assuntos
Evolução Molecular , Código Genético , Proteínas Hedgehog/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Dados de Sequência Molecular
17.
Development ; 134(8): 1549-59, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17360778

RESUMO

During male gametogenesis, a developmentally regulated and cell type-specific transcriptional programme is activated in primary spermatocytes to prepare for differentiation of sperm. The Drosophila aly-class meiotic-arrest loci (aly, comr, achi/vis and topi) are essential for activation of transcription of many differentiation-specific genes, and several genes important for meiotic cell cycle progression, thus linking meiotic divisions to cellular differentiation during spermatogenesis. Protein interaction studies suggest that the aly-class gene products form a chromatin-associated complex in primary spermatocytes. We identify, clone and characterise a new aly-class meiotic-arrest gene, tombola (tomb), which encodes a testis-specific CXC-domain protein that interacts with Aly. The tomb mutant phenotype is more like that of aly and comr mutants than that of achi/vis or topi mutants in terms of target gene profile and chromosome morphology. tomb encodes a chromatin-associated protein required for localisation of Aly and Comr, but not Topi, to chromatin Reciprocally, aly and comr, but not topi or achi/vis, are required to maintain the normal localisation of Tomb. tomb and aly might be components of a complex paralogous to the Drosophila dREAM/Myb-MuvB and C. elegans DRM transcriptional regulatory complexes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Espermatócitos/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Núcleo Celular/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Masculino , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/metabolismo , Ligação Proteica , Espermatócitos/metabolismo , Ativação Transcricional
18.
BMC Genomics ; 8: 64, 2007 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-17338817

RESUMO

BACKGROUND: For expression profiling to have a practical impact in the management of immune-related disease it is essential that it can be applied to peripheral blood cells. Early studies have used total peripheral blood mononuclear cells, and as a consequence the majority of the disease-related signatures identified have simply reflected differences in the relative abundance of individual cell types between patients and controls. To identify cell-specific changes in transcription it would be necessary to profile purified leucocyte subsets. RESULTS: We have used sequential rounds of positive selection to isolate CD4 and CD8 T cells, CD19 B cells, CD14 monocytes and CD16 neutrophils for microarray analysis from a single blood sample. We compared gene expression in cells isolated in parallel using either positive or negative selection and demonstrate that there are no significant consistent changes due to positive selection, and that the far inferior results obtained by negative selection are largely due to reduced purity. Finally, we demonstrate that storing cells prior to separation leads to profound changes in expression, predominantly in cells of the myeloid lineage. CONCLUSION: Leukocyte subsets should be prepared for microarray analysis by rapid positive selection.


Assuntos
Separação Celular/métodos , Perfilação da Expressão Gênica/métodos , Subpopulações de Linfócitos/citologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/isolamento & purificação , Citometria de Fluxo , Humanos , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...