Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 459: 132203, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567134

RESUMO

Marine mammals, due to their long life span, key position in the food web, and large lipid deposits, often face significant health risks from accumulating contaminants. This systematic review examines published literature on pollutant-induced adverse health effects in the International Union for Conservation of Nature (IUCN) red-listed marine mammal species. Thereby, identifying gaps in literature across different extinction risk categories, spatial distribution and climatic zones of studied habitats, commonly used methodologies, researched pollutants, and mechanisms from cellular to population levels. Our findings reveal a lower availability of exposure-effect data for higher extinction risk species (critically endangered 16%, endangered 15%, vulnerable 66%), highlighting the need for more research. For many threatened species in the Southern Hemisphere pollutant-effect relationships are not established. Non-destructively sampled tissues, like blood or skin, are commonly measured for exposure assessment. The most studied pollutants are POPs (31%), metals (30%), and pesticides (17%). Research on mixture toxicity is scarce while pollution-effect studies primarily focus on molecular and cellular levels. Bridging the gap between molecular data and higher-level effects is crucial, with computational approaches offering a high potential through in vitro to in vivo extrapolation using (toxico-)kinetic modelling. This could aid in population-level risk assessment for threatened marine mammals.


Assuntos
Espécies em Perigo de Extinção , Poluentes Ambientais , Animais , Poluição Ambiental , Mamíferos , Ecossistema , Poluentes Ambientais/toxicidade
2.
Aquat Toxicol ; 255: 106394, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603369

RESUMO

Cell-based toxicity testing has emerged as a useful tool in (eco)toxicological research, allowing the ethical assessment of the effects of contaminants such as trace metals on marine megafauna. However, metal interactions with various dissolved ligands in the microplate environment may influence the effective exposure concentrations. Hence, the cells are not exposed to the nominal concentrations within the test system. This study aimed to establish and evaluate the effectiveness of cell-based bioassays for investigating the toxicity of selected metals in dugongs through the following objectives: (1) measure the cytotoxic potential of cadmium (Cd2+), and chromium (Cr6+) to dugong skin cell cultures, (2) investigate the interactions between media constituents and selected trace metals in cell-based bioassays, and (3) evaluate the risk to a free-ranging population of dugong based on effect values. Chromium was the most toxic of the metals tested (EC50 = 1.14 µM), followed by Cd (EC50 = 6.35 µM). Assessment of ultrafiltered (< 3 kDa) exposure media showed that 1% and 92.5% of Cr and Cd were associated with larger organic components of the media. Further, the binding of Cd to media constituents was calculated to underestimate Cd toxicity in cell-based assays by an order of magnitude. This understanding of metal partitioning in cell-based bioassays provides a more accurate method for assessing toxicity in cell-based bioassays. In addition, this study illustrated that dugong cells are more sensitive to Cr and Cd than other marine wildlife species. The chemical risk assessment found the dugong population in Moreton Bay to be at high risk from Cd exposure.


Assuntos
Dugong , Oligoelementos , Poluentes Químicos da Água , Animais , Dugong/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Poluentes Químicos da Água/toxicidade , Metais/metabolismo , Cromo , Oligoelementos/metabolismo , Bioensaio
3.
Chemosphere ; 286(Pt 2): 131753, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34358896

RESUMO

Although the recovery and beneficial reuse of organic matter and nutrients from sludge represents an important move towards environmental sustainability, the accumulation of chemicals in biosolid-amended soils could pose serious environmental and human health risks. However, (eco)toxicological profiling of complex chemical mixtures in biosolids is currently limited. In particular, the effect of anaerobic digestion (AD), the most common stabilization process for sewage sludge, on the (eco)toxicity of those complex mixtures is poorly studied. In this work, we fill this research gap by applying an effect-based monitoring approach to screen sludge samples (n = 4) from a full-scale sewage treatment plant before and after conventional mesophilic (37 °C) AD using a battery of cell-based in vitro bioassays for four types of hormonal activity: estrogenic, androgenic, progestagenic and glucocorticoid activity, both in agonist and antagonist modes. We detected estrogenic, glucocorticoid and anti-progestagenic activity in all sludge samples. The glucocorticoid and anti-progestagenic activity remained mostly unchanged after AD treatment, but estrogenicity increased three-fold, likely as a result of bioactivation processes in the digestor. This study presents the first report on the concentration and fate of glucocorticoid and anti-progestagenic activity in AD. Future research should apply bioanalytical tools to a wider range of sludge samples to get a better understanding of the typical hormonal activity in sludge and develop effect-based trigger (EBT) values for biosolids to help interpret the risk posed by the hormonal activity detected in sludge.


Assuntos
Glucocorticoides , Esgotos , Anaerobiose , Estrona , Humanos , Progestinas , Eliminação de Resíduos Líquidos
4.
J Hazard Mater ; 420: 126512, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34284283

RESUMO

Environmental contaminants pose serious health threats to marine megafauna species, yet methods defining exposure threshold limits are lacking. Here, a three-pillar chemical risk assessment framework is presented based on (1) species- and chemical-specific lifetime bioaccumulation modelling, (2) non-destructive in vitro and in vivo toxicity threshold assessment, and (3) chemical risk quantification. We used the effects of cadmium (Cd) in green sea turtles (Chelonia mydas) as a proof of concept to evaluate the quantitative mechanistic modelling approach. A physiologically-based kinetic (PBK) model simulated Cd tissue concentrations (liver, kidney, muscle, fat, brain, scute, and 'rest of the body') in C.mydas. The validated PBK model then translated species-specific in vitro results to in vivo effects. The results showed that the resilience of C.mydas towards Cd kidney toxicity is age-dependent and differs with changing physiology and feeding ecology. Using the model in reverse mode, a steady-state exposure threshold of 0.1 µg/g dry weight Cd in forage was derived and compared to real-world exposure scenarios. Three out of the four globally distinct C.mydas populations assessed are exposed to Cd levels above this threshold limit. This approach can be adapted to other marine species and chemicals to prioritize measures for managing potentially harmful chemical exposures.


Assuntos
Tartarugas , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Rim/química , Fígado/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Environ Pollut ; 277: 116795, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640813

RESUMO

Investigating environmental pollution is important to understand its impact on endangered species such as green turtles (Chelonia mydas). In this study, we investigated the accumulation and potential toxicity of selected persistent organic pollutants (POPs) and naturally occurring MeO-PBDEs in liver, fat, kidney and muscle of turtles (n = 30) of different gender, size, year of death, location and health status. Overall, POP concentrations were low and accumulation was highest in liver and lowest in fat which is likely due to the poor health of several animals, causing a remobilization of lipids and associated compounds. PCBs and p,p'-DDE dominated the POP profiles, and relatively high MeO-PBDE concentrations (2'-MeO-BDE 68 up to 192 ng/g lw, 6-MeO-BDE 47 up to 79 ng/g lw) were detected in all tissues. Only few influences of factors such as age, gender and location were found. While concentrations were low compared to other marine wildlife, biological toxicity equivalences obtained by screening the tissue extracts using the micro-EROD assay ranged from 2.8 to 356 pg/g and the highest values were observed in muscle, followed by kidney and liver. This emphazises that pollutant mixtures found in the turtles have the potential to cause dioxin-like effects in these animals and that dioxin-like compounds should not be overlooked in future studies.


Assuntos
Bifenilos Policlorados , Tartarugas , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Éteres Difenil Halogenados/toxicidade , Poluentes Orgânicos Persistentes , Bifenilos Policlorados/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Sci Total Environ ; 658: 732-743, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583168

RESUMO

Marine megafauna that forage in proximity to land can be exposed to a diverse mixture of chemicals that - individually or combined - have the potential to affect their health. Characterizing such complex exposure and examining associations with health still poses considerable challenges. The present study summarizes the development and application of novel approaches to identifying chemical hazards and their potential impacts on the health of coastal wildlife, using green sea turtles as model species. We used an epidemiological study approach to collect blood and keratinized scute samples from free-ranging turtles foraging in nearshore areas and an offshore control site. These were analyzed using a combination of non-targeted, effect-based and multi-chemical analytical screening approaches to assess internal exposure to a wide range of chemicals. The screening phase identified a suite of elements (essential and non-essential) as priority for further investigation. Many of these elements are not commonly analyzed in marine wildlife, illustrating that comprehensive screening is important where exposure is unknown or uncertain. In particular, cobalt was present at highly elevated concentrations, in the order of those known to elicit acute effects across other vertebrate species. Several trace elements, including cobalt, were correlated with clinical indicators of impaired turtle health. In addition, biomarkers of oxidative stress (e.g. 3-indolepropionic acid and lipid peroxidation products) identified in the blood of turtles showed significant correlations with clinical health markers (particularly alkaline phosphatase and total bilirubin), as well as with cobalt. To assist interpretation of trace element blood data in the absence of sufficient information on reptile toxicity, we established exposure reference intervals using a healthy control population. In addition, trace element exposure history was investigated by establishing temporal exposure indices using steady-state relationships between blood and scute. Overall, the data provide a strong argument for the notion that trace element exposure is having an impact on the health of coastal sea turtle populations.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Tartarugas/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Recifes de Corais , Queensland , Poluentes Químicos da Água/sangue
7.
Sci Total Environ ; 612: 321-329, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28854388

RESUMO

Organisms are exposed to mixtures of both known and unknown chemicals which are diverse and variable, and thus difficult and costly to characterise and monitor using traditional target analyses. The objective of this study was to validate and apply in vitro effect-based methods by which whole blood can be used to screen internal exposure to such complex chemical mixtures. For this study, we used whole blood of green sea turtles (Chelonia mydas). To ensure the chemical mixture in blood is transferred with minimal losses or bias, we tested a modified QuEChERS extraction method specifically developed for multi- and non-target instrument analysis. The extracts were dosed to a battery of in vitro bioassays (AhR-CAFLUX, AREc32, NFκB-bla, VM7Luc4E2, Microtox), each with a different mode of action (e.g., AhR receptor mediated xenobiotics, NrF2-mediated oxidative stress, NFκB mediated response to inflammation, estrogen activity and baseline toxicity oxidative stress, respectively) in order to cover a wide spectrum of chemicals. Results confirmed the absence of interferences of the blood extract with the responses of the different assays, thus indicating the methods' compatibility with effect-based screening approaches. To apply this approach, whole blood samples were collected from green turtles foraging in agricultural, urban and remote areas of the Australian Great Barrier Reef. The effect-based screening revealed significant differences in exposure, with higher induction of AhR-CAFLUX, AREc32 and Microtox assays in turtles from the agricultural foraging ground. Overall, these results corroborated with concurrent health, target and non-target analyses in the same animals performed as part of a larger program. This study provides evidence that the proposed effect-based approach is suitable for screening and evaluating internal exposure of organisms to chemical mixtures. The approach could be valuable for advancing understanding on multiple levels ranging from identification of priority chemicals in effect-directed investigations to exploring relationships between exposure and disease, not only in sea turtles, but in any organism.


Assuntos
Bioensaio/métodos , Tartarugas/sangue , Poluentes Químicos da Água/sangue , Animais , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...