Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122180, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470088

RESUMO

Selective cytotoxicity of ZnO nanoparticles among different cell types and cancer and non-cancerous cells has been demonstrated earlier. In the view of anticancer potential of ZnO nanoparticles and their presence in numerous industrial products, it is of great importance to carefully evaluate their effects and mechanisms of action in both cancerous and healthy cells. In this paper, the effects of ZnO nanoparticles on cancerous HeLa and non-cancerous MRC-5 cells are investigated by studying the changes in the vibrational properties of the cells using Raman spectroscopy. Both types of cells were incubated with ZnO nanoparticles of average size 40 nm in the doses from the range 10-40 µg/ml for the period of 48 h, after which Raman spectra were collected. Raman modes' intensity ratios I1659/I1444, I2855/I2933 and I1337/I1305 were determined as spectral markers of the cytotoxic effect of ZnO in both cell types. Non-negative principal component analysis was used instead of standard one for analysis and detection of spectral features characteristic for nanoparticle-treated cells. The first several non-negative loading vectors obtained in this analysis coincided remarkably well with the Raman spectra of particular biomolecules, showing increase of lipid and decrease of nucleic acids and protein content. Our study pointed out that Raman spectral markers of lipid unsaturation, especially I1270/I1300, are relevant for tracing the cytotoxic effect of ZnO nanoparticles on both cancerous and non-cancerous cells. The change of these spectral markers is correlated to the dose of applied nanoparticles and to the degree of cellular damage. Furthermore, great similarity of spectral features of increasing lipids to spectral features of phosphatidylserine, one of the main apoptotic markers, was recognized in treated cells. Finally, the results strongly indicated that the degree of lipid saturation, presented in the cells, plays an important role in the interaction of cells with nanoparticles.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Análise Espectral Raman/métodos , Nanopartículas/química , Morte Celular , Lipídeos
2.
Waste Biomass Valorization ; 11(12): 6841-6854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421107

RESUMO

PURPOSE: Every advanced oxidation process (AOP) has its limitations in water purification. Novel designs with simultaneous application of different AOPs can offer better solutions for cleaner water. METHODS: We have comparatively studied two advanced oxidation processes (AOPs) on decolourisation of Reactive Orange 16 (RO 16) azo dye pollutant from water: gas plasma treatment by low power atmospheric pressure plasma using novel plasma needle configuration, and semiconductor heterogeneous photocatalysis using titanium dioxide (TiO2) nanopowders. Additionally, simultaneous application of two advanced oxidation processes on azo dye decolourisation was studied. RESULTS: It was found that plasma treatment is very efficient system for the dye removal even for low flow rates (1 slm) of the Ar as feed gas. The presence of 10% of O2 in Ar flow intensified dye oxidation process and shortened required time for total decolourisation. When plasma and catalyst were simultaneously applied, TiO2 was activated with a few Watts plasma source as well as 300 W UV lamp source. The synergic effect of two AOPs was more pronounced for higher feed gas flow rates, resulting in improved decolourisation efficiency. CONCLUSION: Plasma needle can efficiently remove Reactive Orange 16 azo dye from water with a power consumption of only few Watts. With the addition of TiO2 the removal efficiency is significantly improved.

3.
Analyst ; 145(11): 3983-3995, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32322872

RESUMO

The design of nanoparticles for application in medical diagnostics and therapy requires a thorough understanding of various aspects of nanoparticle-cell interactions. In this work, two unconventional methods for the study of nanoparticle effects on cells, Raman spectroscopy and atomic force microscopy (AFM), were employed to track the molecular and morphological changes that are caused by the interaction between cervical carcinoma-derived HeLa cells and two types of cerium dioxide (CeO2) nanoparticles, ones with dextran coating and the others with no coating. Multivariate statistical analyses of Raman spectra, such as principal component analysis and partial least squares regression, were applied in order to extract the variations in the vibrational features of cell biomolecules and through them, the changes in biomolecular content and conformation. Both types of nanoparticles induced changes in DNA, lipid and protein contents of the cell and variations of the protein secondary structure, whereas dextran-coated CeO2 affected the cell-growth rate to a higher extent. Atomic force microscopy showed changes in cell roughness, cell height and nanoparticle effects on surface molecular layers. The method differentiated between the impact of dextran-coated and uncoated CeO2 nanoparticles with higher precision than performed viability tests. Due to the holistic approach provided by vibrational information on the overall cell content, accompanied by morphological modifications observed by high-resolution microscopy, this methodology offers a wider picture of nanoparticle-induced cell changes, in a label-free single-cell manner.


Assuntos
Membrana Celular/efeitos dos fármacos , Nanopartículas Metálicas/química , Pseudópodes/efeitos dos fármacos , Membrana Celular/química , Cério/química , Dextranos/química , Células HeLa , Humanos , Microscopia de Força Atômica , Análise de Componente Principal , Pseudópodes/química , Análise de Regressão , Análise Espectral Raman , Propriedades de Superfície
4.
Langmuir ; 30(39): 11582-90, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25220220

RESUMO

Ultrafine CeO2-δ nanopowder, prepared by a simple and cost-effective self-propagating room temperature synthesis method (SPRT), showed high adsorption capability for removal of different azo dyes. Batch type of adsorption experiments with fixed initial pH value were conducted for the removal of Reactive Orange 16 (RO16), Methyl Orange (MO), and Mordant Blue 9 (MB9). The equilibrium adsorption data were evaluated using Freundlich and Langmuir isotherm models. The Langmuir model slightly better describes isotherm data for RO16 and MO, whereas the Freundlich model was found to best fit the isotherm data for MB9 over the whole concentration range. The maximum adsorption capacities, determined from isotherm data for MO, MB9, and RO16 were 113, 101, and 91 mg g(-1) respectively. The adsorption process follows the pseudo-second-order kinetic model indicating the coexistence of chemisorption and physisorption. The mechanism of azo dye adsorption is also discussed.

5.
Nanoscale ; 4(17): 5469-76, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22850822

RESUMO

Ce(1-x)Pr(x)O(2-δ) (0 ≤ x ≤ 0.4) nanocrystals were synthesized by self-propagating method and thoroughly characterized using X-ray diffraction, Raman and X-ray photoelectron spectroscopy and magnetic measurements. Undoped CeO2 nanocrystals exhibited intrinsic ferromagnetism at room temperature. Despite the increased concentration of oxygen vacancies in doped samples, our results showed that ferromagnetic ordering rapidly degrades with Pr doping. The suppression of ferromagnetism can be explained in terms of the different dopant valence state, the different nature of the vacancies formed in Pr-doped samples and their ability/disability to establish the ferromagnetic ordering.

6.
J Nanopart Res ; 11(7): 1521-1554, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21170135

RESUMO

This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...