Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Endocrinol ; 166(2): 223-34, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22065857

RESUMO

OBJECTIVE: Somatostatin analogues (SSA) reduce autonomous GH secretion by activating somatostatin receptors (sst) 2 and 5 in 50-60% of acromegalic patients. However, by inhibiting insulin secretion these SSA reduce glucose tolerance. DG3173 is a novel SSA with additional binding to sst4 and low insulin-suppressing activity. We investigated the effect of DG3173, including its relation to specific tumour characteristics, on GH secretion in human somatotroph adenoma cell cultures (hSA) in comparison with Octreotide. METHODS: Twenty-seven hSA were characterised immunohistochemically for their hormone- and sst-expression, granularity and pre-surgical therapy with SSA. GH was determined in supernatants of hSA treated with DG3173 or Octreotide in time- (n=6) and dose-response (n=21) experiments. A positive response was defined as GH suppression to below 80% of baseline. RESULTS: In the dose-response experiments DG3173 suppressed GH secretion in more adenomas than Octreotide (10/21 vs 5/21), including 38% (6/16) of Octreotide non-responders. In responders the extent of GH suppression and IC(50) were comparable for both SSA. The response-rate of both SSA was higher in monohormonal vs bihormonal adenomas, yet GH declined similarly in both groups. Neither pre-surgical SSA (n=6) nor tumour morphology was related to the GH response. However, semi-quantitative analysis indicated a small but significant negative correlation between the GH response to Octreotide and the immunoreactivity scores of sst2 expression. CONCLUSIONS: DG3173 equalled Octreotide in suppressing GH secretion in hSA. Since DG3173 suppressed GH in some Octreotide-non-responsive adenomas, its clinical effectiveness will be worth testing. Moreover, its reduced insulin-suppressive potency would make it a valuable alternative to Octreotide.


Assuntos
Adenoma/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Receptores de Somatostatina/agonistas , Somatostatina/análogos & derivados , Adenoma/tratamento farmacológico , Adenoma/patologia , Adenoma/cirurgia , Adulto , Idoso , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Adenoma Hipofisário Secretor de Hormônio do Crescimento/tratamento farmacológico , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Adenoma Hipofisário Secretor de Hormônio do Crescimento/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Octreotida/uso terapêutico , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Somatostatina/farmacologia , Especificidade por Substrato , Resultado do Tratamento , Células Tumorais Cultivadas
2.
Mech Dev ; 92(1): 47-54, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10704887

RESUMO

Despite the pivotal role of the pancreas in hormonally-regulated pathways in the body, e.g. glucose homeostasis, the genetic mechanisms defining it have for many years remained largely enigmatic. After years out of the spotlight, pancreas development has once again come to centre stage. To a large extent, this is due to recent advances made through the detailed analysis of transgenic mice which have been engineered to carry mutations in specific developmental control genes. This review specifically focuses on the specification of the endocrine pancreas lineage and in particular on the role of the developmental control genes Pax4 and Pax6 in the generation of specific endocrine cell types. The comparison of various phenotypes of different mouse mutants affecting endocrine development supports a model in which Pax4 and Pax6 are required for the differentiation of certain endocrine cell lineages and implies a potential for acting at different levels of endocrine development.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Homeodomínio/fisiologia , Pâncreas/citologia , Pâncreas/embriologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Proteínas do Olho , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Família Multigênica , Mutação , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Proteínas Repressoras , Fatores de Transcrição/genética
3.
Mech Dev ; 84(1-2): 147-51, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10473130

RESUMO

The leucine zipper transcription factor TSC-22 (TGF-beta1 Stimulated Clone-22) was first isolated from a mouse osteoblast cell line as an immediate-early target gene of TGF-beta1. However, work with other cell lines, as well as with a Drosophila homolog, bunched, suggests that it is an effector gene of various growth factors and potentially involved in the integration of multiple extracellular signals. Throughout mouse embryogenesis TSC-22 is expressed in a dynamic pattern. Although early TSC-22 expression is ubiquitous in 6.5 day embryos, as development proceeds TSC-22 expression is upregulated at sites of epithelial-mesenchymal interactions such as the limb bud, tooth primordiurn, hair follicle, kidney, lung, and pancreas. TSC-22 is also expressed in many neural crest-derived tissues including the mesenchyme of the branchial arches, the cranial, dorsal root, and sympathetic ganglia, as well as the facial cartilage and bone. Other areas of expression are the otic and optic vesicles, the heart, and cartilage and bone forming regions throughout the embryo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Proteínas Repressoras , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Olho/embriologia , Olho/metabolismo , Gânglios/embriologia , Gânglios/metabolismo , Hibridização In Situ/métodos , Zíper de Leucina/genética , Botões de Extremidades/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Development ; 125(8): 1433-45, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9502724

RESUMO

Mothers against dpp (Mad) mediates Decapentaplegic (DPP) signaling throughout Drosophila development. Here we demonstrate that Medea encodes a MAD-related protein that functions in DPP signaling. MEDEA is most similar to mammalian Smad4 and forms heteromeric complexes with MAD. Like dpp, Medea is essential for embryonic dorsal/ventral patterning. However, Mad is essential in the germline for oogenesis whereas Medea is dispensable. In the wing primordium, loss of Medea most severely affects regions receiving low DPP signal. MEDEA is localized in the cytoplasm, is not regulated by phosphorylation, and requires physical association with MAD for nuclear translocation. Furthermore, inactivating MEDEA mutations prevent nuclear translocation either by preventing interaction with MAD or by trapping MAD/MEDEA complexes in the cytosol. Thus MAD-mediated nuclear translocation is essential for MEDEA function. Together these data show that, while MAD is essential for mediating all DPP signals, heteromeric MAD/MEDEA complexes function to modify or enhance DPP responses. We propose that this provides a general model for Smad4/MEDEA function in signaling by the TGF-beta family.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Transativadores/biossíntese , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Padronização Corporal , Células COS , Clonagem Molecular , Drosophila/embriologia , Drosophila/genética , Embrião não Mamífero/fisiologia , Evolução Molecular , Genes de Insetos , Humanos , Proteínas de Insetos/biossíntese , Substâncias Macromoleculares , Mamíferos , Dados de Sequência Molecular , Fosforilação , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteína Smad4 , Transativadores/química , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas
5.
Dev Biol ; 175(1): 108-17, 1996 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-8608857

RESUMO

The zebrafish DVR-1 (zDVR-1) gene, like Xenopus Vg1, is present maternally as an unprocessed precursor protein which is distributed ubiquitously along the future dorsoventral axis. Also, like Vg1, overexpression of zDVR-1 in zebrafish directs synthesis of more precursor, but no processed protein. However, the native zDVR-1 precursor is processed to mature protein when expressed in Xenopus. Like processed Vg1, mature zDVR-1 is a potent inducer of axial mesoderm. The parallels in expression pattern, apparent regulation of protein processing, and mesoderm-inducing activity support the hypothesis that localized protein processing controls production of a dorsal mesoderm inducer in these two species. Furthermore, using mutant mRNAs, we show that cleavage site sequences of the precursor protein are important in regulating protein processing.


Assuntos
Indução Embrionária , Glicoproteínas/metabolismo , Proteínas de Homeodomínio , Mesoderma/fisiologia , Proteínas Repressoras , Fatores de Transcrição , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteína Goosecoid , Dados de Sequência Molecular , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Especificidade da Espécie , Distribuição Tecidual , Xenopus , Proteínas de Xenopus , Proteínas de Peixe-Zebra
6.
Dev Biol ; 157(2): 474-83, 1993 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8500654

RESUMO

Activins are members of the transforming growth factor-beta superfamily, a class of peptide growth factors that can regulate the growth and differentiation of a variety of cell types. In mesoderm induction assays, activins A and B were shown to be very potent inducers and it was only recently demonstrated that they are crucial for initial mesoderm induction in Xenopus embryos. To determine the source of activin protein for initial mesoderm induction and to investigate whether activins may play further roles in embryonic development we have examined the localization of the mRNAs encoding the activin beta A and beta B subunits in Xenopus embryos. Activin beta A and beta B mRNAs are found in the follicle cells surrounding oocytes but not in oocytes themselves or fertilized eggs. During embryogenesis activin mRNA is first detected after the midblastula transition and expression increases as development proceeds. Activin beta B mRNA is homogeneously distributed during blastula and early gastrula stages but restricted to the dorso-anterior region in neurula stage embryos. At the early tailbud stage activin expression becomes confined to the brain, eye analgen, visceral pouches, otic vesicles, and the anterior notochord.


Assuntos
Blastocisto/química , Indução Embrionária , Gástrula/química , Inibinas/análise , Mesoderma , Oligopeptídeos , Folículo Ovariano/química , Peptídeos/análise , RNA Mensageiro/análise , Ativinas , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/embriologia , Química Encefálica , Olho/química , Olho/embriologia , Feminino , Dados de Sequência Molecular , Notocorda/química , Folículo Ovariano/citologia , Sinais Direcionadores de Proteínas , Xenopus laevis
7.
EMBO J ; 10(13): 4311-20, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1836759

RESUMO

Previous work has established that destruction of cyclin B is necessary for exit from mitosis and entry into the next interphase. Sea urchin cyclin B lacking an N-terminal domain is stable, permanently activates cdc2 kinase, resulting in mitotic arrest, and permanently activates the destruction pathway acting on full length cyclin B. Here we have compared the properties of clam cyclins A and B lacking related N-terminal domains. Both cyclin A delta 60 and B delta 97 bind to cdc2 kinase, keep it hyperactivated and block the completion of mitosis. By adding purified delta cyclin proteins to a cell-free system at different cell cycle times, we find that when the cell-free system reaches the cyclin destruction point in the presence of either A delta 60 or B delta 97, the cyclin destruction pathway acting on full length cyclins fails to be turned off. However, the two cyclins differ dramatically in their ability to turn on cyclin destruction. When added to emetine-arrested interphase lysates devoid of endogenous cyclins, only cyclin B delta 97 activates the cyclin destruction system; cyclin A delta 60 does not. This functional difference between the two cyclin types, the first to be described, provides strong support for the idea that the two cyclins have different roles in the cell cycle and suggests that one specialized role of the cyclin B-cdc2 complex is to activate the cyclin destruction pathway and drive cells into interphase of the next cell cycle.


Assuntos
Ciclinas/fisiologia , Mitose , Animais , Bivalves , Proteína Quinase CDC2/metabolismo , Sistema Livre de Células , Ciclinas/genética , Ciclinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Expressão Gênica , Microinjeções , Xenopus
8.
Genes Dev ; 4(12A): 2098-111, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1980118

RESUMO

Several Drosophila homeo box genes have been shown to control cell fates in specific positions or cell groups of the embryo. Because the mechanisms involved in the pattern formation of complex internal organs, such as the musculature and the nervous system, are still largely unknown, we sought to identify and analyze new homeo box genes specifically expressed in these tissues. Here, the molecular analysis and expression pattern of one such gene, containing both a homeo box and a PRD repeat, is described. This gene, designated S59, is expressed in a small number of segmentally repeated mesodermal cells approximately 2 hr postgastrulation. Gradually, four groups of S59-expressing mesodermal cells appear in each abdominal hemisegment, each one giving rise to a particular somatic muscle after fusion with surrounding myoblasts. Thus, individual precursors for particular muscles, which we call "founder cells," are specified relatively early during mesodermal development. The expression of a particular homeo box gene in these cells suggests that distinct programs of gene expression are active in subsets of mesodermal cells after germ band elongation, resulting in a specification of their developmental fates. In addition to the mesoderm, S59 is expressed in a subset of neuronal cells of the CNS and their precursors and also in cells of a small region of the midgut.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Expressão Gênica , Genes Homeobox , Proteínas de Homeodomínio , Mesoderma/metabolismo , Músculos/metabolismo , Proteínas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Drosophila/embriologia , Mesoderma/citologia , Dados de Sequência Molecular , Músculos/citologia , Músculos/embriologia , Proteínas/metabolismo , Sequências Repetitivas de Ácido Nucleico , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico , Células-Tronco/metabolismo
9.
J Biomech Eng ; 110(1): 37-41, 1988 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-3347022

RESUMO

Smoothing and differentiation of noisy data using spline functions requires the selection of an unknown smoothing parameter. The method of generalized cross-validation provides an excellent estimate of the smoothing parameter from the data itself even when the amount of noise associated with the data is unknown. In the present model only a single smoothing parameter must be obtained, but in a more general context the number may be larger. In an earlier work, smoothing of the data was accomplished by solving a minimization problem using the technique of dynamic programming. This paper shows how the computations required by generalized cross-validation can be performed as a simple extension of the dynamic programming formulas. The results of numerical experiments are also included.


Assuntos
Algoritmos , Modelos Teóricos , Análise de Variância , Fenômenos Biomecânicos , Interpretação Estatística de Dados , Análise Numérica Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA