Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(8): 4509-4516, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33523062

RESUMO

Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materials is crucially important. For controlling H atom adsorption and migration, we investigated irreducible divalent, trivalent, and quadrivalent heterocation-doping effects on H atom adsorption and migration over the CeO2(111) surface using density functional theory (DFT) calculations. Results revealed that the electron-deficient lattice oxygen (Olat) and the flexible CeO2 matrix played key roles in strong adsorption of H atoms. Heterocations with smaller valence and smaller ionic radius induced the electron-deficient Olat. In addition, smaller cation doping enhanced the CeO2 matrix flexibility. Moreover, we confirmed the influence of H atom adsorption controlled by doping on surface proton migration (i.e. surface protonics) and catalytic reaction involving surface protonics (NH3 synthesis in an electric field). Results confirmed clear correlation between H atom adsorption energy and surface protonics.

2.
RSC Adv ; 11(13): 7621-7626, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423258

RESUMO

Hydrogen (H) atomic migration over a metal oxide is an important surface process in various catalytic reactions. Control of the interaction between H atoms and the oxide surfaces is therefore important for better catalytic performance. For this investigation, we evaluated the adsorption energies of the H atoms over perovskite-type oxides (Sr1-x Ba x ZrO3; 0.00 ≤ x ≤ 0.50) using DFT (Density Functional Theory) calculations, then clarified the effects of cation-substitution in the A-site of perovskite oxides on H atom adsorption, migration, and reaction. Results indicated local distortion at the oxide surface as a key factor governing H atom adsorption. Subtle Ba2+ substitution for Sr2+ sites provoked local distortion at the Sr1-x Ba x ZrO3 oxide surface, which led to a decrement in the H atom adsorption energy. Furthermore, the effect of Sr2+/Ba2+ ratio on the H atoms' reactivities was examined experimentally using a catalytic reaction, which was promoted by activated surface H atoms. Results show that the surface H atoms activated by the substitution of Sr2+ sites with a small amount of Ba2+ (x = 0.125) contributed to enhancement of ammonia synthesis rate in an electric field, which showed good agreement with predictions made using DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...