Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 108: 117777, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852256

RESUMO

The design and synthesis of N-desmethyl and N-methyl destruxin E analogs have been demonstrated. The X-ray single crystal structure of destruxin E (1a) revealed a stable three-dimensional (3D) structure, including a s-cis amide bond at the MeVal-MeAla moiety and two intramolecular hydrogen bonds between NH(ß-Ala) and OC(Ile) and between NH(Ile) and OC(ß-Ala). N-Desmethyl analogs 2a (MeAla â†’ Ala) and 2b (MeVal â†’ Val) were synthesized through macrolactonization similar to our previously reported synthesis of 1a. Conversely, for the synthesis of N-methyl analogs 2c (Ile â†’ MeIle) and 2d (ß-Ala â†’ Meß-Ala), macrolactonization did not proceed; therefore, cyclization precursors 10c and 10d were designed to maintain the intramolecular hydrogen bonds described above during their cyclization. The macrolactamization proceeded despite the presence of a less reactive N-methylamino group at the N-terminus in both cases. Analog 2a, which exhibits multiple conformers in solutions, was inactive at 50 µM, whereas analog 2b, which exhibits a conformation similar to that of 1a in solutions, exhibited morphological changes against osteoclast-like multinuclear cells at 1.6 µM. The activity of the MeIle analog 2c, which cannot take the intramolecular hydrogen bond (Ile)NH•••OC(ß-Ala) in 1a, was markedly diminished compared with that of 1a, and that of the Meß-Ala analog 2d, which cannot take the intramolecular hydrogen bond (ß-Ala)NH•••OC(Ile) in 1a, was further reduced to one-fourth of that of 2c. The overall results indicate that both the s-cis amide bond at the MeVal-MeAla moiety and two intramolecular hydrogen bonds (ß-Ala)NH•••OC(Ile) and (Ile)NH•••OC(ß-Ala) are important for constraining the conformation of the macrocyclic peptide backbone in destruxin E, thereby exhibiting its potent biological activity.


Assuntos
Osteoclastos , Relação Estrutura-Atividade , Osteoclastos/efeitos dos fármacos , Osteoclastos/citologia , Camundongos , Animais , Cristalografia por Raios X , Estrutura Molecular , Ligação de Hidrogênio , Relação Dose-Resposta a Droga , Modelos Moleculares
2.
Tohoku J Exp Med ; 263(2): 151-160, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38569887

RESUMO

Activated microglia contribute to many neuroinflammatory diseases in the central nervous system. In this study, we attempted to identify an anti-inflammatory compound that could suppress microglial activation. We performed high-throughput screening with a chemical library developed at our institute. We performed a luciferase assay of nuclear factor-kappa B (NF-κB) reporter stable HT22 cells and identified a compound that was confirmed to inhibit the anti-inflammatory response in BV2 microglial cells. The selected dihydropyridine derivative can suppress the expression response of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor (TNF), as well as NF-κB phosphorylation and nuclear translocation, and reduce the intracellular calcium level. Thus, our identified compound has a potential role in suppressing microglial activation and may contribute to the development of a new therapeutic molecule against neuroinflammatory diseases.


Assuntos
Cálcio , Di-Hidropiridinas , Microglia , NF-kappa B , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , NF-kappa B/metabolismo , Cálcio/metabolismo , Linhagem Celular , Di-Hidropiridinas/farmacologia , Fosforilação/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos
3.
PNAS Nexus ; 2(6): pgad203, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388923

RESUMO

Diverse cellular activities are modulated through a variety of RNAs, including long noncoding RNAs (lncRNAs), by binding to certain proteins. The inhibition of oncogenic proteins or RNAs is expected to suppress cancer cell proliferation. We have previously demonstrated that PSF interaction with its target RNAs, such as androgen-induced lncRNA CTBP1-AS, is critical for hormone therapy resistance in prostate and breast cancers. However, the action of protein-RNA interactions remains almost undruggable to date. High-throughput screening (HTS) has facilitated the discovery of drugs for protein-protein interactions. In the present study, we developed an in vitro alpha assay using Flag peptide-conjugated lncRNA, CTBP1-AS, and PSF. We then constructed an effective HTS screening system to explore small compounds that inhibit PSF-RNA interactions. Thirty-six compounds were identified and dose-dependently inhibited PSF-RNA interaction in vitro. Moreover, chemical optimization of these lead compounds and evaluation of cancer cell proliferation revealed two promising compounds, N-3 and C-65. These compounds induced apoptosis and inhibited cell growth in prostate and breast cancer cells. By inhibiting PSF-RNA interaction, N-3 and C-65 up-regulated signals that are repressed by PSF, such as the cell cycle signals by p53 and p27. Furthermore, using a mouse xenograft model for hormone therapy-resistant prostate cancer, we revealed that N-3 and C-65 can significantly suppress tumor growth and downstream target gene expression, such as the androgen receptor (AR). Thus, our findings highlight a therapeutic strategy through the development of inhibitors for RNA-binding events in advanced cancers.

4.
Chemistry ; 29(6): e202300086, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36690588

RESUMO

Invited for the cover of this issue is the group of Hirokazu Tsukamoto at Tohoku University (current affiliation: Yokohama University of Pharmacy). The image depicts anti-selective arylative cyclization reactions of alkynyl aldehydes with arylboronic acids under palladium catalysis in methanol to afford endo- and exo-cyclic products. Read the full text of the article at 10.1002/chem.202203068.

5.
Chemistry ; 29(6): e202203068, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36333971

RESUMO

Palladium(0)/monophosphine complexes catalyze anti-selective alkylative, arylative, and alkynylative cyclizations of alkynyl electrophiles with organometallic reagents. The remarkable anti-selectivity results from novel oxidative addition, that is, the nucleophilic attack of electron-rich palladium(0) on the electrophile across the alkyne followed by transmetalation and reductive elimination ("anti-Wacker"-type cyclization). With regard to 5-alkynals, triphenylphosphine (PPh3 )-ligated palladium(0) catalyzes the cyclization of terminal alkynes and conjugated alkenyl- or alkynyl-substituted ones to afford 2-cyclohexen-1-ol and 2-alkylidene-cyclopentanol derivatives, respectively. For 6-alkyl- or 6-aryl-5-alkynals, the cyclization does not proceed with the palladium/PPh3 catalyst; however, it does proceed with palladium/tricyclohexylphosphine (PCy3 ), to yield the former products predominantly. Remarkably, the latter catalyst completely switches the regioselectivity in the cyclization of the conjugated diyne-aldehydes. Notably, palladium/PPh3 -catalyzed cyclizations also proceed with other organometallics or even without them.

6.
ACS Omega ; 8(51): 49278-49288, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162765

RESUMO

Lysophosphatidic acid (LPA) is a key player in many physiological and pathophysiological processes. The biological activities of LPA are mediated through interactions with-at least-six subtypes of G-protein-coupled receptors (GPCRs) named LPA1-6. Developing a pharmacological tool molecule that activates LPA subtype receptors selectively will allow a better understanding of their specific physiological roles. Here, we designed and synthesized conformationally restricted 25 1-oleoyl LPA analogues MZN-001 to MZN-025 by incorporating its glycerol linker into dihydropyran, tetrahydropyran, and pyrrolidine rings and variating the lipophilic chain. The agonistic activities of these compounds were evaluated using the TGFα shedding assay. Overall, the synthesized analogues exhibited significantly reduced agonistic activities toward LPA1, LPA2, and LPA6, while demonstrating potent activities toward LPA3, LPA4, and LPA5 compared to the parent LPA. Specifically, MZN-010 showed more than 10 times greater potency (EC50 = 4.9 nM) than the standard 1-oleoyl LPA (EC50 = 78 nM) toward LPA5 while exhibiting significantly lower activity on LPA1, LPA2, and LPA6 and comparable potency toward LPA3 and LPA4. Based on the MZN-010 scaffold, we synthesized additional analogues with improved selectivity and potency toward LPA5. Compound MZN-021, which contains a saturated lipophilic chain, exhibited 50 times more potent activity (EC50 = 1.2 nM) than the natural LPA against LPA5 with over a 45-fold higher selectivity when compared to those of other LPA receptors. Thus, MZN-021 was found to be a potent and selective LPA5 agonist. The findings of this study could contribute to broadening the current knowledge about the stereochemical and three-dimensional arrangement of LPA pharmacophore components inside LPA receptors and paving the way toward synthesizing other subtype-selective pharmacological probes.

7.
J Antibiot (Tokyo) ; 75(8): 420-431, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35821085

RESUMO

Synthesis of various destruxin analogs was accomplished using Shiina's macrolactonization as a key reaction. Combinatorial synthesis of cyclization precursors using solid-phase peptide synthesis and macrolactonization in solution were successful. In the synthesis of destruxin E and its analogs, the hydroxyacid-proline (HA1-Pro2) dipeptide with an acetonide-protected diol moiety was synthesized in an asymmetric manner, and the protected diol was converted to an epoxide after macrocyclization. Destruxin E was synthesized on a gram scale using solution-phase synthesis. The structure-activity relationships of destruxins were elucidated through biological evaluation of synthetic destruxins A, B, and E and their analogs for morphological changes in osteoclast-like multinucleated cells.


Assuntos
Depsipeptídeos , Osteoclastos , Ciclização , Depsipeptídeos/farmacologia , Técnicas de Síntese em Fase Sólida , Relação Estrutura-Atividade
8.
Org Lett ; 24(30): 5552-5556, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35867629

RESUMO

The structure determination of the 30-membered cyclodepsipeptide decatransin was demonstrated on the basis of total synthesis. Both (R)- and (S)-2-hydroxy-5-methylhexanoic acid derivatives were prepared via the Evans asymmetric alkylation. N-Alkyl-enriched peptide fragments were synthesized by the Cbz strategy in the solution phase without formation of diketopiperazine and epimerization. The synthesis of putative candidates was achieved by convergent peptide coupling of three peptide fragments, followed by macrocyclization under the Mitsunobu conditions.


Assuntos
Depsipeptídeos , Alquilação , Depsipeptídeos/química , Estrutura Molecular , Fragmentos de Peptídeos
9.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830383

RESUMO

The ATP-binding cassette subfamily G member 2 (ABCG2) transporter is involved in the development of multidrug resistance in cancer patients. Many inhibitors of ABCG2 have been reported to enhance the chemosensitivity of cancer cells. However, none of these inhibitors are being used clinically. The aim of this study was to identify novel ABCG2 inhibitors by high-throughput screening of a chemical library. Among the 5812 compounds in the library, 23 compounds were selected in the first screening, using a fluorescent plate reader-based pheophorbide a (PhA) efflux assay. Thereafter, to validate these compounds, a flow cytometry-based PhA efflux assay was performed and 16 compounds were identified as potential inhibitors. A cytotoxic assay was then performed to assess the effect these 16 compounds had on ABCG2-mediated chemosensitivity. We found that the phenylfurocoumarin derivative (R)-9-(3,4-dimethoxyphenyl)-4-((3,3-dimethyloxiran-2-yl)methoxy)-7H-furo [3,2-g]chromen-7-one (PFC) significantly decreased the IC50 of SN-38 in HCT-116/BCRP colon cancer cells. In addition, PFC stimulated ABCG2-mediated ATP hydrolysis, suggesting that this compound interacts with the substrate-binding site of ABCG2. Furthermore, PFC reversed the resistance to irinotecan without causing toxicity in the ABCG2-overexpressing HCT-116/BCRP cell xenograft mouse model. In conclusion, PFC is a novel inhibitor of ABCG2 and has promise as a therapeutic to overcome ABCG2-mediated MDR, to improve the efficiency of cancer chemotherapy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Furocumarinas/farmacologia , Proteínas de Neoplasias/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Citometria de Fluxo , Furocumarinas/química , Células HCT116 , Xenoenxertos , Ensaios de Triagem em Larga Escala , Humanos , Irinotecano/química , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/genética
10.
J Org Chem ; 86(10): 7304-7313, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33974420

RESUMO

The stereoselective and short-step synthesis of N-protected allo-carnosadine, ent-carnosadine, and carnosadine lactam was accomplished from a common cyclopropane intermediate. The inter-intramolecular double alkylation of diethyl malonate with an optically active 2-methylaziridine derivative gave the key cyclopropane in excellent yield and optical purity. The following monohydrolysis of the diester moiety using different reaction conditions provided both diastereomers of monoacids, which were converted to three carnosadine derivatives in 5-6 steps from the common diester.


Assuntos
Estereoisomerismo , Alquilação , Aziridinas
11.
Org Lett ; 23(11): 4415-4419, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34029112

RESUMO

We discovered JBIR-155 as a novel specific class D ß-lactamase inhibitor from Streptomyces polymachus SoB100815Hv02. JBIR-155 consists of a 6-oxabicyclo[3.2.0]heptan-7-one skeleton and a long unsaturated alkyl chain moiety of which absolute configuration was determined by spectroscopic data, modified Mosher's method, and analyses of the relative configuration of chemically modified derivative. JBIR-155 specifically exhibited inhibitory activity against the class D ß-lactamase, with an IC50 value of 0.36 µM.


Assuntos
Antibacterianos/farmacologia , Streptomyces/química , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
12.
ChemSusChem ; 14(11): 2445-2451, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961342

RESUMO

Non-flammable and highly concentrated electrolyte solutions were designed using tris(2,2,2-trifluoroethyl) phosphate (TFEP) as a main solvent toward a radical improvement in the safety and energy density of lithium-ion batteries. Unlike conventional carbonate ester-based solutions, simple TFEP-based electrolyte solutions were not intrinsically compatible with 5 V-class LiNi0.5 Mn1.5 O4 positive electrodes, even at high concentrations. Based on the degradation mechanism that was analyzed by Raman spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, a fluorinated diluent of methyl 3,3,3-trifluoropropionate (FMP) was introduced to suppress the decomposition of LiBF4 and TFEP at high potentials. A nearly saturated LiBF4 /TFEP+FMP electrolyte solution with a specific composition improved the charge and discharge performance of a LiNi0.5 Mn1.5 O4 electrode, and the solution structure was studied by pulsed-field-gradient NMR spectroscopy.

13.
J Org Chem ; 86(1): 1281-1291, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350304

RESUMO

A gold-catalyzed N,O-acetal formation was established to construct an amide/carbamate-linked N,O-acetal substructure with bulky alcohols. The acyliminium cation species generated from o-alkynylbenzoic acid ester in the presence of a gold catalyst is highly reactive and underwent nucleophilic attack of various bulky alcohols and phenols at room temperature under neutral conditions, leading to the corresponding N,O-acetals in yields of 34-89% with good functional group tolerance.

14.
Biol Pharm Bull ; 43(6): 951-958, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475917

RESUMO

The fungal 13-membered cyclodepsipeptides, beauveriolides I and III, were previously reported to be atheroprotective activity in mouse models via inhibiting sterol O-acyltransferase (SOAT) activity. A total of 149 beauveriolide derivatives (BVDs) synthesized combinatorially were evaluated in in silico absorption, distribution, metabolism and excretion (ADME) analysis and inhibitory activity toward the two SOAT isozymes, SOAT1 and SOAT2. Hence, only 11 BVDs exhibited SOAT2-selective inhibition. Among these, we chose BVD327, which had the highest ADME score, for further evaluation. BVD327 administration (50 mg/kg/d, per os (p.o.)) significantly decreased atherosclerotic lesions in the aorta and heart (25.4 ± 6.9 and 20.6 ± 2.9%, respectively) in apolipoprotein E knockout (Apoe-/-) mice fed a cholesterol-enriched diet (0.2% cholesterol and 21% fat) for 12 weeks. These findings indicate that beauveriolide derivatives can be used as anti-atherosclerotic agents.


Assuntos
Aterosclerose/tratamento farmacológico , Esterol O-Aciltransferase/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas Sanguíneas/metabolismo , Barreira Hematoencefálica/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Canal de Potássio ERG1/genética , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/patologia , Humanos , Absorção Intestinal , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Knockout para ApoE , Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase 2
15.
Biomolecules ; 10(5)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429436

RESUMO

Many pharmacologically important peptides are bacterial or fungal in origin and contain nonproteinogenic amino acid (NPA) building blocks. Recently, it was reported that, in bacteria, a cyclopropane-containing NPA 1-aminocyclopropanecarboxylic acid (ACC) is produced from the L-methionine moiety of S-adenosyl-L-methionine (SAM) by non-canonical ACC-forming enzymes. On the other hand, it has been suggested that a monomethylated ACC analogue, 2-methyl-ACC (MeACC), is derived from L-valine. Therefore, we have investigated the MeACC biosynthesis by identifying a gene cluster containing bacterial MeACC synthase genes. In this gene cluster, we identified two genes, orf29 and orf30, which encode a cobalamin (B12)-dependent radical SAM methyltransferase and a bacterial ACC synthase, respectively, and were found to be involved in the MeACC biosynthesis. In vitro analysis using their recombinant enzymes (rOrf29 and rOrf30) further revealed that the ACC structure of MeACC was derived from the L-methionine moiety of SAM, rather than L-valine. In addition, rOrf29 was found to catalyze the C-methylation of the L-methionine moiety of SAM. The resulting methylated derivative of SAM was then converted into MeACC by rOrf30. Thus, we demonstrate that C-methylation of SAM occurs prior to cyclopropanation in the biosynthesis of a bacterial MeACC (norcoronamic acid).


Assuntos
Aminoácidos/biossíntese , S-Adenosilmetionina/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclopropanos , Liases/genética , Liases/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
16.
Chemistry ; 26(55): 12528-12532, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32291830

RESUMO

Haouamines A, B, and their derivatives were synthesized via Suzuki-Miyaura coupling and three key cyclization reactions as follows: the newly developed palladium(0)-catalyzed arylative cyclization of phenylalanine-derived alkyne-aldehydes with 2-bromoarylboronic acid (an "anti-Wacker"-type cyclization); BF3 ⋅OEt2 -promoted Friedel-Crafts-type cyclization of symmetrical electron-rich aromatic rings adjacent to a tertiary allylic alcohol leading to the indeno-tetrahydropyridine skeleton; and (cyanomethyl)trimethylphosphonium iodide-mediated macrocyclization of amino alcohols to afford aza-paracyclophane precursors. The palladium-catalyzed reduction of mono- and di-triflate intermediates in the later stages enabled the alteration of both the position and number of hydroxyl groups on the C-ring. The instability of haouamine B was dramatically improved by salt formation with formic acid. An unambiguous evaluation of the cytotoxicity of the prepared haouamine derivative formates with and without hydroxyl groups at different positions on the C-ring indicated that the catechol structure in haouamine B produced weak cytotoxicity.

17.
Chem Pharm Bull (Tokyo) ; 68(3): 220-226, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582590

RESUMO

This study demonstrates the structure-activity relationship of Col-003, a potent collagen-heat-shock protein 47 (Hsp47) interaction inhibitor. Col-003 analogues were successfully synthesized by Pd(0)-catalyzed cross-coupling reactions of 5-bromosalicylaldehyde derivatives with alkyl-metal species, and the inhibitory activities of the synthetic analogues were evaluated using surface plasmon resonance analysis (BIAcore). We succeeded in discovering two potent inhibitors that showed 85 and 81% inhibition at a concentration of 1.9 µM against the collagen-Hsp47 interaction. This indicates that elongation of an alkyl linker between two aromatic rings could considerably improve inhibitory activity due to the adjustment of a pendant phenyl moiety to an appropriate position, in addition to the hydrophobic interaction with an alkyl linker moiety.


Assuntos
Aldeídos/química , Colágeno/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Bibliotecas de Moléculas Pequenas/química , Aldeídos/síntese química , Aldeídos/farmacologia , Animais , Catálise , Colágeno/antagonistas & inibidores , Proteínas de Choque Térmico HSP47/antagonistas & inibidores , Paládio/química , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
18.
ACS Appl Mater Interfaces ; 11(43): 39910-39920, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31589031

RESUMO

The microstructure of LiNi0.8Co0.1Mn0.1O2 cathode materials was controlled by the addition of lithium silicate, and the influence on the cycle performance and the rate capability was investigated. Si was not included within the lattice, but localized at the grain boundaries of the primary particles and the pores inside the secondary particles. The addition of the lithium silicate greatly decreased the density of the pores between the primary particles and improved the density of the secondary particles. The capacity retention was successfully improved for lithium silicate-added LiNi0.8Co0.1Mn0.1O2. When lithium silicate-free LiNi0.8Co0.1Mn0.1O2 was charged to 4.3 V, many cracks were formed along the grain boundaries even in the first cycle, while crack formation was remarkably inhibited for lithium silicate-added LiNi0.8Co0.1Mn0.1O2. Moreover, lithium silicate-added LiNi0.8Co0.1Mn0.1O2 particles were almost free from visible microcracks even after 100 cycles at the discharged state. These results suggest that the lithium silicate reinforces the grain-adhesion at the grain boundaries, inhibiting crack formation and electrolyte decomposition inside the cracks.

19.
J Biol Chem ; 294(44): 15962-15972, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492754

RESUMO

Molecular chaperones perform pivotal roles in proteostasis by engaging in protein-protein interactions (PPIs). The collagen-specific molecular chaperone Hsp47 (heat shock protein 47) interacts with procollagen in the endoplasmic reticulum (ER) and plays crucial roles in collagen synthesis. PPIs between Hsp47 and collagen could offer a therapeutic target for fibrosis, which is characterized by abnormal collagen accumulation in the extracellular matrix of fibrotic organs. Herein, we established a bioluminescence resonance energy transfer (BRET) system for assessing Hsp47-collagen interaction dynamics within the ER. After optimization and validation of the method, we could demonstrate inhibition of the interaction between Hsp47 and collagen by a small molecule (Col003) in the ER. Using the BRET system, we also found that Hsp47 interacts not only with the Gly-Pro-Arg motif but also weakly with Gly-Pro-Hyp motifs of triple-helical collagen in cells. Moreover, we found that the serpin loop of Hsp47 (SerpinH1) contributes to its binding to collagen. We propose that the method developed here can provide valuable information on PPIs between Hsp47 and collagen and on the effects of PPI inhibitors important for the management of fibrotic disorders.


Assuntos
Colágeno/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Sítios de Ligação , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Colágeno/química , Retículo Endoplasmático/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP47/antagonistas & inibidores , Proteínas de Choque Térmico HSP47/química , Humanos , Ligação Proteica
20.
Org Lett ; 21(17): 6811-6814, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31442059

RESUMO

Axially chiral 1,3-disubstituted allenes were synthesized via hydroalkylation of alkyl- or aryl-substituted conjugated enynes (readily prepared via a Sonogashira reaction) with pronucleophiles such as dimethyl malonate under the cocatalysis of DTBM-SEGPHOS-ligated palladium and lithium iodide. Although the palladium catalyst ligated with (S)-DTBM-SEGPHOS prefers the formation of (R)-1,3-disubstituted allenes, lithium iodide recovers and increases the intrinsic selectivity producing (S)-allenes by promoting the isomerization of the exo-alkylidene-π-allylpalladium intermediate prior to the nucleophilic substitution step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...