Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7534, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476952

RESUMO

Bound states in the continuum (BICs) have received significant attention for their ability to enhance light-matter interactions across a wide range of systems, including lasers, sensors, and frequency mixers. However, many applications require degenerate or nearly degenerate high-quality factor (Q) modes, such as spontaneous parametric down conversion, non-linear four-wave mixing, and intra-cavity difference frequency mixing for terahertz generation. Previously, degenerate pairs of bound states in the continuum (BICs) have been created by fine-tuning the structure to engineer the degeneracy, yielding BICs that respond unpredictably to structure imperfections and material variations. Instead, using a group theoretic approach, we present a design paradigm based on six-fold rotational symmetry (C6) for creating degenerate pairs of symmetry-protected BICs, whose frequency splitting and Q-factors can be independently and predictably controlled, yielding a complete design phase space. Using a combination of resonator and lattice deformations in silicon metasurfaces, we experimentally demonstrate the ability to tune mode spacing from 2 nm to 110 nm while simultaneously controlling Q-factor.

2.
Nano Lett ; 22(22): 9077-9083, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367359

RESUMO

The effect of terahertz (THz) pulse generation has revolutionized broadband coherent spectroscopy and imaging at THz frequencies. However, THz pulses typically lack spatial structure, whereas structured beams are becoming essential for advanced spectroscopy applications. Nonlinear optical metasurfaces with nanoscale THz emitters can provide a solution by defining the beam structure at the generation stage. We develop a nonlinear InAs metasurface consisting of nanoscale optical resonators for simultaneous generation and structuring of THz beams. We find that THz pulse generation in the resonators is governed by optical rectification. It is more efficient than in ZnTe crystals, and it allows us to control the pulse polarity and amplitude, offering a platform for realizing binary-phase THz metasurfaces. To illustrate this capability, we demonstrate an InAs metalens, which simultaneously generates and focuses THz pulses. The control of spatiotemporal structure using nanoscale emitters opens doors for THz beam engineering and advanced spectroscopy and imaging applications.

3.
Adv Mater ; 31(44): e1904154, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31531907

RESUMO

All open systems that exchange energy with their environment are non-Hermitian. Thermal emitters are open systems that can benefit from the rich set of physical phenomena enabled by their non-Hermitian description. Using phase, symmetry, chirality, and topology, thermal radiation from hot surfaces can be unconventionally engineered to generate light with new states. Such thermal emitters are necessary for a wide variety of applications in sensing and energy conversion. Here, a non-Hermitian selective thermal emitter is experimentally demonstrated, which exhibits passive PT-symmetry in thermal emission at 700 °C. Furthermore, the effect of internal phase of the oscillator system on far-field thermal radiation is experimentally demonstrated. The ability to tune the oscillator phase provides new pathways for both engineering and controlling selective thermal emitters for applications in sensing and energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...