Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391919

RESUMO

In this study, we examine the topography and adhesion images of the cell surface of neutrophils during the activation process. Our analysis of cell surface parameters indicates that the most significant changes in neutrophils occur within the first 30 min of activation, suggesting that reactive oxygen species may require approximately this amount of time to activate the cells. Interestingly, we observed surface granular structure as early as 10 min after neutrophil activation when examining atomic force microscopy images. This finding aligns with the reorganization observed within the cells under confocal laser scanning microscopy. By analyzing the cell surface images of adhesion, we identified three spatial surface parameters that correlate with the activation time. This finding enables us to estimate the degree of activation by using atomic force microscopy maps of the cell surface.


Assuntos
Ativação de Neutrófilo , Microscopia de Força Atômica/métodos , Membrana Celular/metabolismo
2.
Nat Genet ; 54(12): 1839-1852, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36229674

RESUMO

Cancer genetics has uncovered many tumor-suppressor and oncogenic pathways, but few alterations have revealed mechanisms involved in tumor spreading. Here, we examined the role of the third most significant chromosomal deletion in human melanoma that inactivates the adherens junction gene NECTIN1 in 55% of cases. We found that NECTIN1 loss stimulates melanoma cell migration in vitro and spreading in vivo in both zebrafish and human tumors specifically in response to decreased IGF1 signaling. In human melanoma biopsy specimens, adherens junctions were seen exclusively in areas with low IGF1 levels, but not in NECTIN1-deficient tumors. Our study establishes NECTIN1 as a major determinant of melanoma dissemination and uncovers a genetic control of the response to microenvironmental signals.


Assuntos
Melanoma , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Melanoma/genética , Fator de Crescimento Insulin-Like I/genética
3.
Nanoscale ; 14(39): 14594-14602, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36155714

RESUMO

Naked mole rats (NMRs) demonstrate exceptional longevity and resistance to cancer. Using a biochemical approach, it was previously shown that the treatment of mouse fibroblast cells with RasV12 oncogene and SV40 Large T antigen (viral oncoprotein) led to malignant transformations of cells. In contrast, NMR fibroblasts were resistant to malignant transformations upon this treatment. Here we demonstrate that atomic force microscopy (AFM) can provide information which is in agreement with the above finding, and further, adds unique information about the physical properties of cells that is impossible to obtain by other existing techniques. AFM indentation data were collected from individual cells and subsequently processed through the brush model to obtain information about the mechanics of the cell body (absolute values of the effective Young's moduli). Furthermore, information about the physical properties of the pericellular layer surrounding the cells was obtained. We found a statistically significant decrease in the rigidity of mouse cells after the treatment, whereas there was no significant change found in the rigidity of NMR cells upon the treatment. We also found that the treatment caused a substantial increase in a long part of the pericellular layer in NMR cells only (the long brush was defined as having a size of >10 microns). The mouse cells and smaller brush did not show statistically significant changes upon treatment. The observed change in cell mechanics is in agreement with the frequently observed decrease in cell rigidity during progression towards cancer. The change in the pericellular layer due to the malignant transformation of fibroblast cells has practically not been studied, though it was shown that the removal of part of the pericellular layer of NMR fibroblasts made the cells susceptible to malignant transformation. Although it is plausible to speculate that the observed increase in the long part of the brush layer of NMR cells might help cells to resist malignant transformations, the significance of the observed change in the pericellular layer is yet to be understood. As of now, we can conclude that changes in cell mechanics might be used as an indication of the resistance of NMR cells to malignant transformations.


Assuntos
Ratos-Toupeira , Neoplasias , Animais , Antígenos Virais de Tumores , Fibroblastos/patologia , Camundongos , Neoplasias/patologia , Proteínas Oncogênicas
4.
Nanoscale ; 12(23): 12432-12443, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32495797

RESUMO

At present, a technique potentially capable of measuring values of Young's modulus at the nanoscale is atomic force microscopy (AFM) working in the indentation mode. However, the question if AFM indentation data can be translated into absolute values of the modulus is not well-studied as yet, in particular, for the most interesting case of stiff nanocomposite materials. Here we investigate this question. A special sample of nanocomposite material, shale rock, was used, which is relatively homogeneous at the multi-micron scale. Two AFM modes, force-volume and PeakForce QNM were used in this study. The nanoindentation technique was used as a control benchmark for the measurement of effective Young's modulus of the shale sample. The indentation rate was carefully controlled. To ensure the self-consistency of the mechanical model used to analyze AFM data, the model was modified to take into account the presence of the surface roughness. We found excellent agreement between the average values of effective Young's modulus calculated within AFM and the nanoindenter benchmark method. At the same time, the softest and hardest areas of the sample were seen only with AFM.

5.
Nanoscale ; 11(46): 22316-22327, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31724677

RESUMO

New ultrabright fluorescent silica nanoparticles capable of the fast targeting of epithelial tumors in vivo are presented. The as-synthesized folate-functionalized ultrabright particles of 30-40 nm are 230 times brighter than quantum dots (QD450) and 50% brighter than the polymer dots with similar spectra (excitation 365 nm and emission 486 nm). To decrease non-specific targeting, particles are coated with polyethylene glycol (PEG). We demonstrate the in vivo targeting of xenographic human cervical epithelial tumors (HeLa cells) using zebrafish as a model system. The particles target tumors (and probably even individual HeLa cells) as small as 10-20 microns within 20-30 minutes after blood injection. To demonstrate the advantages of ultrabrightness, we repeated the experiments with similar but 200× less bright particles. Compared to those, ultrabright particles showed ∼3× faster tumor detection and ∼2× higher relative fluorescent contrast of tumors/cancer cells.


Assuntos
Nanopartículas/química , Neoplasias/diagnóstico por imagem , Dióxido de Silício/química , Animais , Feminino , Ácido Fólico/química , Células HeLa , Humanos , Imagem Óptica , Tamanho da Partícula , Polietilenoglicóis/química , Porosidade , Transplante Heterólogo , Peixe-Zebra
6.
Mater Today (Kidlington) ; 23: 16-25, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31057328

RESUMO

Cellulose acetate (CA), viscose, or artificial silk are biocompatible human-benign derivatives of cellulose, one of the most abundant biopolymers on earth. While various optical materials have been developed from CA, optical CA nanomaterials are nonexistent. Here we report on the assembly of a new family of extremely bright fluorescent CA nanoparticles (CA-dots), which are fully suitable for in vivo imaging / targeting applications. CA-dots can encapsulate a variety of molecular fluorophores. Using various commercially available fluorophores, we demonstrate that the fluorescence of CA-dots can be tuned within the entire UV-VIS-NIR spectrum. We also demonstrate excellent specific targeting of tumors in vivo, when injected in blood in zebrafish (xenograft model of human cervical epithelial cancer), and unusually strong ex-vivo topical labeling of colon cancer in mice utilizing CA folate-functionalized nanoparticles.

7.
Geroscience ; 41(2): 229-242, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30937823

RESUMO

The first domesticated companion animal, the dog, is currently represented by over 190 unique breeds. Across these numerous breeds, dogs have exceptional variation in lifespan (inversely correlated with body size), presenting an opportunity to discover longevity-determining traits. We performed a genome-wide association study on 4169 canines representing 110 breeds and identified novel candidate regulators of longevity. Interestingly, known functions within the identified genes included control of coat phenotypes such as hair length, as well as mitochondrial properties, suggesting that thermoregulation and mitochondrial bioenergetics play a role in lifespan variation. Using primary dermal fibroblasts, we investigated mitochondrial properties of short-lived (large) and long-lived (small) dog breeds. We found that cells from long-lived breeds have more uncoupled mitochondria, less electron escape, greater respiration, and capacity for respiration. Moreover, our data suggest that long-lived breeds have higher rates of catabolism and ß-oxidation, likely to meet elevated respiration and electron demand of their uncoupled mitochondria. Conversely, cells of short-lived (large) breeds may accumulate amino acids and fatty acid derivatives, which are likely used for biosynthesis and growth. We hypothesize that the uncoupled metabolic profile of long-lived breeds likely stems from their smaller size, reduced volume-to-surface area ratio, and therefore a greater need for thermogenesis. The uncoupled energetics of long-lived breeds lowers reactive oxygen species levels, promotes cellular stress tolerance, and may even prevent stiffening of the actin cytoskeleton. We propose that these cellular characteristics delay tissue dysfunction, disease, and death in long-lived dog breeds, contributing to canine aging diversity.


Assuntos
Envelhecimento/genética , Metabolismo Energético/genética , Estudo de Associação Genômica Ampla , Longevidade/genética , Mitocôndrias/genética , Animais , Tamanho Corporal , Cruzamento , Células Cultivadas , Cães , Fibroblastos/citologia , Fibroblastos/fisiologia , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
8.
Data Brief ; 22: 383-391, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30596135

RESUMO

Characterization data of fluorescent nanoparticles made of cellulose acetate (CA-dots) are shown. The data in this article accompanies the research article "Ultrabright fluorescent cellulose acetate nanoparticles for imaging tumors through systemic and topical applications" [1]. The measurements and calculation of brightness of individual CA-dots are presented. The description of conjugation procedure Pluronic F127-Folic Acid copolymer and folic acid is shown. Identification of composition of CA dots using Raman and absorbance spectroscopy is demonstrated. The methods for image analysis of efficiency of CA-dot targeting of epithelial tumors xenografted in zebrafish is presented.

9.
Methods Mol Biol ; 1814: 449-468, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956249

RESUMO

Atomic force microscopy (AFM) indentation analysis of cells is a unique method of measuring stiffness of the cell body and physical properties of its pericellular coat. These cell parameters correlate with cells of abnormality and diseases. Viable biological cells can be studied with this method directly in a culture dish with no special preparation. Here we describe a step-by-step method to analyze the AFM force-indentation curves to derive cell mechanics (the modulus of elasticity of the cell body) and the parameters of the pericellular coat (density and the thickness of the coat layer). Technical details, potential difficulties, and points of special attention are described.


Assuntos
Corpo Celular/ultraestrutura , Microscopia de Força Atômica/métodos , Animais , Fenômenos Biomecânicos , Membrana Celular/ultraestrutura , Módulo de Elasticidade , Células Epiteliais/ultraestrutura , Cobaias , Humanos , Processamento de Imagem Assistida por Computador , Células MCF-7
10.
Methods Mol Biol ; 1814: 469-482, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956250

RESUMO

Ringing mode of atomic force microscopy (AFM) enables imaging the surfaces of biological samples, cells, tissue, biopolymers, etc. to obtain unique information, such as the size of molecules pulled by the AFM probe from the sample surface, heights of the sample at different load forces, etc. (up to eight different imaging channels can be recorded simultaneously, which is in addition to five channels already available in other rival modes). The imaging can be done in both air (gases) and liquid (buffers). In addition, the images obtained in ringing mode do not have several common artifacts and can be collected up to 20× faster compared to the rival imaging modes. Here we describe a step-by-step approach to collect images in ringing mode applied to biological and soft materials in general. Technical details, potential difficulties, and points of special attention are described.


Assuntos
Imageamento Tridimensional , Microscopia de Força Atômica/métodos , Processamento de Sinais Assistido por Computador
11.
Nat Methods ; 15(7): 491-498, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915189

RESUMO

The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polarization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheometry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment.


Assuntos
Análise de Célula Única/métodos , Fenômenos Biomecânicos , Adesão Celular , Movimento Celular , Humanos , Dispositivos Lab-On-A-Chip , Células MCF-7 , Estresse Mecânico
12.
Methods Mol Biol ; 1530: 229-245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28150205

RESUMO

Fractal analysis of the cell surface is a rather sensitive method which has been recently introduced to characterize cell progression toward cancer. The surface of fixed and freeze-dried cells is imaged with atomic force microscopy (AFM) modality in ambient conditions. Here we describe the method to perform the fractal analysis specifically developed for the AFM images. Technical details, potential difficulties, points of special attention are described.


Assuntos
Membrana Celular/ultraestrutura , Fractais , Microscopia de Força Atômica , Neoplasias/patologia , Neoplasias/ultraestrutura , Algoritmos , Humanos , Propriedades de Superfície
13.
Nanotechnology ; 27(49): 494005, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834315

RESUMO

Biomechanical properties of single cells in vitro or ex vivo and their pericellular interfaces have recently attracted a lot of attention as a potential biophysical (and possibly prognostic) marker of various diseases and cell abnormalities. At the same time, the influence of the cell environment on the biomechanical properties of cells is not well studied. Here we use atomic force microscopy to demonstrate that cell-cell communication can have a profound effect on both cell elasticity and its pericellular coat. A human pre-B p190BCR/ABL acute lymphoblastic leukemia cell line (ALL3) was used in this study. Assuming that cell-cell communication is inversely proportional to the distance between cells, we study ALL3 cells in vitro growing at different cell densities. ALL3 cells demonstrate a clear density dependent behavior. These cells grow very well if started at a relatively high cell density (HD, >2 × 105 cells ml-1) and are poised to grow at low cell density (LD, <1 × 104 cells ml-1). Here we observe ∼6× increase in the elastic (Young's) modulus of the cell body and ∼3.6× decrease in the pericellular brush length of LD cells compared to HD ALL3 cells. The difference observed in the elastic modulus is much larger than typically reported for pathologically transformed cells. Thus, cell-cell communication must be taken into account when studying biomechanics of cells, in particular, correlating cell phenotype and its biophysical properties.


Assuntos
Comunicação Celular , Linhagem Celular , Módulo de Elasticidade , Elasticidade , Humanos , Microscopia de Força Atômica
14.
Biophys J ; 111(1): 236-46, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27410750

RESUMO

The atomic force microscopy (AFM) indentation method combined with the brush model can be used to separate the mechanical response of the cell body from deformation of the pericellular layer surrounding biological cells. Although self-consistency of the brush model to derive the elastic modulus of the cell body has been demonstrated, the model ability to characterize the pericellular layer has not been explicitly verified. Here we demonstrate it by using enzymatic removal of hyaluronic content of the pericellular brush for guinea pig fibroblast cells. The effect of this removal is clearly seen in the AFM force-separation curves associated with the pericellular brush layer. We further extend the brush model for brushes larger than the height of the AFM probe, which seems to be the case for fibroblast cells. In addition, we demonstrate that an extension of the brush model (i.e., double-brush model) is capable of detecting the hierarchical structure of the pericellular brush, which, for example, may consist of the pericellular coat and the membrane corrugation (microridges and microvilli). It allows us to quantitatively segregate the large soft polysaccharide pericellular coat from a relatively rigid and dense membrane corrugation layer. This was verified by comparison of the parameters of the membrane corrugation layer derived from the force curves collected on untreated cells (when this corrugation membrane part is hidden inside the pericellular brush layer) and on treated cells after the enzymatic removal of the pericellular coat part (when the corrugations are exposed to the AFM probe). We conclude that the brush model is capable of not only measuring the mechanics of the cell body but also the parameters of the pericellular brush layer, including quantitative characterization of the pericellular layer structure.


Assuntos
Fibroblastos/citologia , Fenômenos Mecânicos , Microscopia de Força Atômica , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Entropia , Cobaias
15.
Nanomedicine ; 12(8): 2429-2437, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27431055

RESUMO

The treatment of chronic myeloid leukemia (CML), a clonal myeloproliferative disorder has improved recently, but most patients have not yet been cured. Some patients develop resistance to the available tyrosine kinase treatments. Persistence of residual quiescent CML stem cells (LSCs) that later resume proliferation is another common cause of recurrence or relapse of CML. Eradication of quiescent LSCs is a promising approach to prevent recurrence of CML. Here we report on new biophysical differences between quiescent and proliferating CD34+ LSCs, and speculate how this information could be of use to eradicate quiescent LSCs. Using AFM measurements on cells collected from four untreated CML patients, substantial differences are observed between quiescent and proliferating cells in the elastic modulus, pericellular brush length and its grafting density at the single cell level. The higher pericellular brush densities of quiescent LSCs are common for all samples. The significance of these observations is discussed.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Células-Tronco Neoplásicas/fisiologia , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/fisiopatologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Proteínas Tirosina Quinases
16.
Langmuir ; 32(4): 1111-9, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26727545

RESUMO

When studying the mechanical properties of cells by an indentation technique, it is important to take into account the nontrivial pericellular interface (or pericellular "brush") which includes a pericellular coating and corrugation of the pericellular membrane (microvilli and microridges). Here we use atomic force microscopy (AFM) to study the mechanics of cortical neurons taking into account the presence of the above pericellular brush surrounding cell soma. We perform a systematic study of the mechanical properties of both the brush layer and the underlying neuron soma and demonstrate that the brush layer is likely responsible for the low elastic modulus (<1 kPa) typically reported for cortical neurons. When the contribution of the pericellular brush is excluded, the average elastic modulus of the cortical neuron soma is found to be 3-4 times larger than previously reported values measured under similar physiological conditions. We also demonstrate that the underlying soma behaves as a nonviscous elastic material over the indentation rates studied (1-10 µm/s). As a result, it seems that the brush layer is responsible for the previously reported viscoelastic response measured for the neuronal cell body as a whole, within these indentation rates. Due to of the similarities between the macroscopic brain mechanics and the effective modulus of the pericellular brush, we speculate that the pericellular brush layer might play an important role in defining the macroscopic mechanical properties of the brain.


Assuntos
Membrana Celular/fisiologia , Microvilosidades/fisiologia , Neurônios/fisiologia , Animais , Membrana Celular/ultraestrutura , Córtex Cerebral/citologia , Módulo de Elasticidade , Glicocálix/ultraestrutura , Microscopia de Força Atômica , Microvilosidades/ultraestrutura , Neurônios/ultraestrutura , Ratos , Temperatura
17.
Nanomedicine ; 11(7): 1667-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25959926

RESUMO

We used AFM HarmoniX modality to analyse the surface of individual human cervical epithelial cells at three stages of progression to cancer, normal, immortal (pre-malignant) and carcinoma cells. Primary cells from 6 normal strains, 6 cancer, and 6 immortalized lines (derived by plasmid DNA-HPV-16 transfection of cells from 6 healthy individuals) were tested. This cell model allowed for good control of the cell phenotype down to the single cell level, which is impractical to attain in clinical screening tests (ex-vivo). AFM maps of physical (nonspecific) adhesion are collected on fixed dried cells. We show that a surface parameter called fractal dimension can be used to segregate normal from both immortal pre-malignant and malignant cells with sensitivity and specificity of more than 99%. The reported method of analysis can be directly applied to cells collected in liquid cytology screening tests and identified as abnormal with regular optical methods to increase sensitivity. FROM THE CLINICAL EDITOR: Despite cervical smear screening, sometimes it is very difficult to differentiate cancers cells from pre-malignant cells. By using AFM to analyze the surface properties of human cervical epithelial cells, the authors were able to accurately identify normal from abnormal cells. This method could augment existing protocols to increase diagnostic accuracy.


Assuntos
Detecção Precoce de Câncer , Células Epiteliais/ultraestrutura , Microscopia de Força Atômica , Neoplasias do Colo do Útero/diagnóstico , Linhagem Celular Tumoral , Progressão da Doença , Células Epiteliais/patologia , Feminino , Fractais , Papillomavirus Humano 16/patogenicidade , Humanos , Estadiamento de Neoplasias , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/ultraestrutura
18.
Biophys J ; 107(3): 564-575, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25099796

RESUMO

Here we investigated the question whether cells, being highly heterogeneous objects, could be described with the elastic modulus (effective Young's modulus) in a self-consistent way. We performed a comparative analysis of the elastic modulus derived from the indentation data obtained with atomic force microscopy (AFM) on human cervical epithelial cells (both normal and cancerous). Both sharp (cone) and dull (2500-nm radius sphere) AFM probes were used. The indentation data were processed through different elastic models. The cell was approximated as a homogeneous elastic medium that had either 1), smooth hemispherical boundary (Hertz/Sneddon models) or 2), the boundary covered with a layer of glycocalyx and membrane protrusions ("brush" models). Consistency of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrated that only one model showed consistency in treating cells as a homogeneous elastic medium, namely, the brush model, when processing the indentation data collected with the dull AFM probe. The elastic modulus demonstrated strong depth dependence in all models: Hertz/Sneddon models (no brush taken into account), and when the brush model was applied to the data collected with sharp conical probes. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus, used in a self-consistent way, when using the brush model to analyze data collected with a dull AFM probe. The nature of these results is discussed.


Assuntos
Módulo de Elasticidade , Células Epiteliais/fisiologia , Modelos Biológicos , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Células Cultivadas , Glicocálix/metabolismo , Humanos
19.
Methods ; 60(2): 202-13, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23639869

RESUMO

Here we overview and further develop a quantitative method to measure mechanics of biological cells in indentation experiments, which is based on the use of atomic force microscopy (AFM). We demonstrate how the elastic modulus of the cell body should be measured when the cellular brush is taken into account. The brush is an essential inelastic part of the cell, which surrounds all eukaryotic (the brush is mostly microvilli and glycocalyx) and gram-negative prokaryotic cells (the brush is polysaccharides). The other main feature of the described method is the use of a relatively dull AFM probe to stay in the linear stress-strain regime. In particular, we show that the elastic modulus (aka the Young's modulus) of cells is independent of the indentation depth up to 10-20% deformation for the eukaryotic cells studied here. Besides the elastic modulus, the method presented allows obtaining the parameters of cellular brush, such as the effective length and grafting density of the brush. Although the method is demonstrated on eukaryotic cells, it is directly applicable for all types of cells, and even non-biological soft materials surrounded by either a brush or any field of long-range forces.


Assuntos
Módulo de Elasticidade , Microscopia de Força Atômica/métodos , Algoritmos , Extensões da Superfície Celular/ultraestrutura , Interpretação Estatística de Dados , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Humanos , Células MCF-7 , Modelos Biológicos
20.
Biophys J ; 104(10): 2123-31, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23708352

RESUMO

When measuring the elastic (Young's) modulus of cells using AFM, good attachment of cells to a substrate is paramount. However, many cells cannot be firmly attached to many substrates. A loosely attached cell is more compliant under indenting. It may result in artificially low elastic modulus when analyzed with the elasticity models assuming firm attachment. Here we suggest an AFM-based method/model that can be applied to extract the correct Young's modulus of cells loosely attached to a substrate. The method is verified by using primary breast epithelial cancer cells (MCF-7) at passage 4. At this passage, approximately one-half of cells develop enough adhesion with the substrate to be firmly attached to the substrate. These cells look well spread. The other one-half of cells do not develop sufficient adhesion, and are loosely attached to the substrate. These cells look spherical. When processing the AFM indentation data, a straightforward use of the Hertz model results in a substantial difference of the Young's modulus between these two types of cells. If we use the model presented here, we see no statistical difference between the values of the Young's modulus of both poorly attached (round) and firmly attached (close to flat) cells. In addition, the presented model allows obtaining parameters of the brush surrounding the cells. The cellular brush observed is also statistically identical for both types of cells. The method described here can be applied to study mechanics of many other types of cells loosely attached to substrates, e.g., blood cells, some stem cells, cancerous cells, etc.


Assuntos
Módulo de Elasticidade , Microscopia de Força Atômica/métodos , Adesão Celular , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA