Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38002935

RESUMO

Environmental restraints like cold, drought and heat adversely affect growth and development in different ways and at different plant developmental stages, leading to reduced crop yield [...].


Assuntos
Variação Genética , Plantas , Plantas/genética
2.
Plants (Basel) ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631789

RESUMO

Complex glycerolipidome analysis of wheat upon low temperature stress has been reported for above-ground tissues only. There are no reports on the effects of cold stress on the root lipidome nor on tissue-specific responses of cold stress wheat roots. This study aims to investigate the changes of lipid profiles in the different developmental zones of the seedling roots of two wheat varieties with contrasting cold tolerance exposed to chilling and freezing temperatures. We analyzed 273 lipid species derived from 21 lipid classes using a targeted profiling approach based on MS/MS data acquired from schedule parallel reaction monitoring assays. For both the tolerant Young and sensitive Wyalkatchem species, cold stress increased the phosphatidylcholine and phosphatidylethanolamine compositions, but decreased the monohexosyl ceramide compositions in the root zones. We show that the difference between the two varieties with contrasting cold tolerance could be attributed to the change in the individual lipid species, rather than the fluctuation of the whole lipid classes. The outcomes gained from this study may advance our understanding of the mechanisms of wheat adaptation to cold and contribute to wheat breeding for the improvement of cold-tolerance.

3.
Genes (Basel) ; 12(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34828346

RESUMO

Drought stress requires plants to adjust their water balance to maintain tissue water levels. Isohydric plants ('water-savers') typically achieve this through stomatal closure, while anisohydric plants ('water-wasters') use osmotic adjustment and maintain stomatal conductance. Isohydry or anisohydry allows plant species to adapt to different environments. In this paper we show that both mechanisms occur in bread wheat (Triticum aestivum L.). Wheat lines with reproductive drought-tolerance delay stomatal closure and are temporarily anisohydric, before closing stomata and become isohydric at higher threshold levels of drought stress. Drought-sensitive wheat is isohydric from the start of the drought treatment. The capacity of the drought-tolerant line to maintain stomatal conductance correlates with repression of ABA synthesis in spikes and flag leaves. Gene expression profiling revealed major differences in the drought response in spikes and flag leaves of both wheat lines. While the isohydric drought-sensitive line enters a passive growth mode (arrest of photosynthesis, protein translation), the tolerant line mounts a stronger stress defence response (ROS protection, LEA proteins, cuticle synthesis). The drought response of the tolerant line is characterised by a strong response in the spike, displaying enrichment of genes involved in auxin, cytokinin and ethylene metabolism/signalling. While isohydry may offer advantages for longer term drought stress, anisohydry may be more beneficial when drought stress occurs during the critical stages of wheat spike development, ultimately improving grain yield.


Assuntos
Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Transcriptoma , Triticum/fisiologia , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Fenômenos Fisiológicos Vegetais
4.
Planta ; 254(1): 4, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131818

RESUMO

MAIN CONCLUSION: Transcriptomic analyses identified anther-expressed genes in wheat likely to contribute to heat tolerance and hence provide useful genetic markers. The genes included those involved in hormone biosynthesis, signal transduction, the heat shock response and anther development. Pollen development is particularly sensitive to high temperature heat stress. In wheat, heat-tolerant and heat-sensitive cultivars have been identified, although the underlying genetic causes for these differences are largely unknown. The effects of heat stress on the developing anthers of two heat-tolerant and two heat-sensitive wheat cultivars were examined in this study. Heat stress (35 °C) was found to disrupt pollen development in the two heat-sensitive wheat cultivars but had no visible effect on pollen or anther development in the two heat-tolerant cultivars. The sensitive anthers exhibited a range of developmental abnormalities including an increase in unfilled and clumped pollen grains, abnormal pollen walls and a decrease in pollen viability. This subsequently led to a greater reduction in grain yield in the sensitive cultivars following heat stress. Transcriptomic analyses of heat-stressed developing wheat anthers of the four cultivars identified a number of key genes which may contribute to heat stress tolerance during pollen development. Orthologs of some of these genes in Arabidopsis and rice are involved in regulation of the heat stress response and the synthesis of auxin, ethylene and gibberellin. These genes constitute candidate molecular markers for the breeding of heat-tolerant wheat lines.


Assuntos
Oryza , Triticum , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Temperatura , Triticum/genética
5.
Cells ; 9(5)2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466096

RESUMO

Chilling and frost conditions impose major yield restraints to wheat crops in Australia and other temperate climate regions. Unpredictability and variability of field frost events are major impediments for cold tolerance breeding. Metabolome and lipidome profiling were used to compare the cold response in spikes of cold-tolerant Young and sensitive variety Wyalkatchem at the young microspore (YM) stage of pollen development. We aimed to identify metabolite markers that can reliably distinguish cold-tolerant and sensitive wheat varieties for future cold-tolerance phenotyping applications. We scored changes in spike metabolites and lipids for both varieties during cold acclimation after initial and prolonged exposure to combined chilling and freezing cycles (1 and 4 days, respectively) using controlled environment conditions. The two contrasting wheat varieties showed qualitative and quantitative differences in primary metabolites involved in osmoprotection, but differences in lipid accumulation most distinctively separated the cold response of the two wheat lines. These results resemble what we previously observed in flag leaves of the same two wheat varieties. The fact that this response occurs in tissue types with very different functions indicates that chilling and freezing tolerance in these wheat lines is associated with re-modelling of membrane lipid composition to maintain membrane fluidity.


Assuntos
Congelamento , Lipidômica , Metaboloma , Pólen/metabolismo , Triticum/metabolismo , Aminas/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Lipídeos , Fenótipo , Folhas de Planta/metabolismo
6.
Metabolomics ; 15(11): 144, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-31630279

RESUMO

INTRODUCTION: Frost events lead to A$360 million of yield losses annually to the Australian wheat industry, making improvement of chilling and frost tolerance an important trait for breeding. OBJECTIVES: This study aimed to use metabolomics and lipidomics to explore genetic variation in acclimation potential to chilling and to identify metabolite markers for chilling tolerance in wheat. METHODS: We established a controlled environment screening assay that is able to reproduce field rankings of wheat germplasm for chilling and frost tolerance. This assay, together with targeted metabolomics and lipidomics approaches, were used to compare metabolite and lipid levels in flag leaves of two wheat varieties with contrasting chilling tolerance. RESULTS: The sensitive variety Wyalkatchem showed a strong reduction in amino acids after the first cold night, followed by accumulation of osmolytes such as fructose, glucose, putrescine and shikimate over a 4-day period. Accumulation of osmolytes is indicative of acclimation to water stress in Wyalkatchem. This response was not observed for tolerant variety Young. The two varieties also displayed significant differences in lipid accumulation. Variation in two lipid clusters, resulted in a higher unsaturated to saturated lipid ratio in Young after 4 days cold treatment and the lipids PC(34:0), PC(34:1), PC(35:1), PC(38:3), and PI(36:4) were the main contributors to the unsaturated to saturated ratio change. This indicates that Young may have superior ability to maintain membrane fluidity following cold exposure, thereby avoiding membrane damage and water stress observed for Wyalkatchem. CONCLUSION: Our study suggests that metabolomics and lipidomics markers could be used as an alternative phenotyping method to discriminate wheat varieties with differences in cold acclimation.


Assuntos
Adaptação Fisiológica , Resposta ao Choque Frio , Metabolômica , Triticum/metabolismo , Lipidômica , Fenótipo
7.
Front Plant Sci ; 10: 679, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178886

RESUMO

During evolution of land plants, the haploid gametophytic stage has been strongly reduced in size and the diploid sporophytic phase has become the dominant growth form. Both male and female gametophytes are parasitic to the sporophyte and reside in separate parts of the flower located either on the same plant or on different plants. For fertilization to occur, bi-cellular or tri-cellular male gametophytes (pollen grains) have to travel to the immobile female gametophyte in the ovary. To survive exposure to a hostile atmosphere, pollen grains are thought to enter a state of complete or partial developmental arrest (DA). DA in pollen is strongly associated with acquisition of desiccation tolerance (DT) to extend pollen viability during air travel, but occurrence of DA in pollen is both species-dependent and at the same time strongly dependent on the reigning environmental conditions at the time of dispersal. Several environmental stresses (heat, drought, cold, humidity) are known to affect pollen production and viability. Climate change is also posing a serious threat to plant reproductive behavior and crop productivity. It is therefore timely to gain a better understanding of how DA and pollen viability are controlled in plants and how pollen viability can be protected to secure crop yields in a changing environment. Here, we provide an overview of how DA and pollen viability are controlled and how the environment affects them. We make emphasis on what is known and areas where a deeper understanding is needed.

8.
G3 (Bethesda) ; 9(2): 473-489, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30541928

RESUMO

Water stress during reproductive growth is a major yield constraint for wheat (Triticum aestivum L). We previously established a controlled environment drought tolerance phenotyping method targeting the young microspore stage of pollen development. This method eliminates stress avoidance based on flowering time. We substituted soil drought treatments by a reproducible osmotic stress treatment using hydroponics and NaCl as osmolyte. Salt exclusion in hexaploid wheat avoids salt toxicity, causing osmotic stress. A Cranbrook x Halberd doubled haploid (DH) population was phenotyped by scoring spike grain numbers of unstressed (SGNCon) and osmotically stressed (SGNTrt) plants. Grain number data were analyzed using a linear mixed model (LMM) that included genetic correlations between the SGNCon and SGNTrt traits. Viewing this as a genetic regression of SGNTrt on SGNCon allowed derivation of a stress tolerance trait (SGNTol). Importantly, and by definition of the trait, the genetic effects for SGNTol are statistically independent of those for SGNCon. Thus they represent non-pleiotropic effects associated with the stress treatment that are independent of the control treatment. QTL mapping was conducted using a whole genome approach in which the LMM included all traits and all markers simultaneously. The marker effects within chromosomes were assumed to follow a spatial correlation model. This resulted in smooth marker profiles that could be used to identify positions of putative QTL. The most influential QTL were located on chromosome 5A for SGNTol (126cM; contributed by Halberd), 5A for SGNCon (141cM; Cranbrook) and 2A for SGNTrt (116cM; Cranbrook). Sensitive and tolerant population tail lines all showed matching soil drought tolerance phenotypes, confirming that osmotic stress is a valid surrogate screening method.


Assuntos
Secas , Pressão Osmótica , Locos de Características Quantitativas , Triticum/genética , Adaptação Fisiológica/genética , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Pólen/genética , Pólen/fisiologia , Triticum/fisiologia
9.
Front Plant Sci ; 9: 228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527219

RESUMO

Anther development progresses through 15 distinct developmental stages in wheat, and accurate determination of anther developmental stages is essential in anther and pollen studies. A detailed outline of the development of the wheat anther through its entire developmental program, including the 15 distinct morphological stages, is presented. In bread wheat (Triticum aestivum), anther developmental stages were correlated with five measurements, namely auricle distance, spike length, spikelet length, anther length and anther width. Spike length and auricle distance were shown to be suitable for rapid anther staging within cultivars. Anther length is an accurate measurement in determining anther stages and may be applicable for use between cultivars. Tapetal Programmed Cell Death (PCD) in wheat begins between late tetrad stage (stage 8) and the early young microspore stage (stage 9) of anther development. Tapetal PCD continues until the vacuolate pollen stage (stage 11), at which point the tapetum fully degrades. The timing of tapetal PCD initiation is slightly delayed compared to that in rice, but is two stages earlier than in the model dicot Arabidopsis. The MYB80 gene, which encodes a transcription factor regulating the timing of tapetal PCD, reaches its peak expression at the onset of tapetal PCD in wheat.

10.
Sci Rep ; 8(1): 2749, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426939

RESUMO

Seagrasses and aquatic plants are important clades of higher plants, significant for carbon sequestration and marine ecological restoration. They are valuable in the sense that they allow us to understand how plants have developed traits to adapt to high salinity and photosynthetically challenged environments. Here, we present a large-scale phylogenetically profiled transcriptomics repository covering seagrasses and aquatic plants. SeagrassDB encompasses a total of 1,052,262 unigenes with a minimum and maximum contig length of 8,831 bp and 16,705 bp respectively. SeagrassDB provides access to 34,455 transcription factors, 470,568 PFAM domains, 382,528 prosite models and 482,121 InterPro domains across 9 species. SeagrassDB allows for the comparative gene mining using BLAST-based approaches and subsequent unigenes sequence retrieval with associated features such as expression (FPKM values), gene ontologies, functional assignments, family level classification, Interpro domains, KEGG orthology (KO), transcription factors and prosite information. SeagrassDB is available to the scientific community for exploring the functional genic landscape of seagrass and aquatic plants at: http://115.146.91.129/index.php .


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Bases de Dados Genéticas , Plantas/classificação , Plantas/genética , Biologia Marinha , Filogenia , Transcriptoma/genética
11.
Mar Environ Res ; 134: 55-67, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29307464

RESUMO

In this study we investigated the effect of light-limitation (∼20 µmol photons m-2 s-1) on the southern hemisphere seagrass, Zostera muelleri. RNA sequencing, chlorophyll fluorometry and HPLC techniques were used to investigate how the leaf-specific transcriptome drives changes in photosynthesis and photo-pigments in Z. muelleri over 6 days. 1593 (7.51%) genes were differentially expressed on day 2 and 1481 (6.98%) genes were differentially expressed on day 6 of the experiment. Differential gene expression correlated with significant decreases in rETRMax, Ik, an increase in Yi (initial photosynthetic quantum yield of photosystem II), and significant changes in pigment composition. Regulation of carbohydrate metabolism was observed along with evidence that abscisic acid may serve a role in the low-light response of this seagrass. This study provides a novel understanding of how Z. muelleri responds to light-limitation in the marine water column and provides potential molecular markers for future conservation monitoring efforts.


Assuntos
Complexo de Proteína do Fotossistema II/fisiologia , Luz Solar , Zosteraceae/fisiologia , Clorofila , Fotossíntese , Folhas de Planta
12.
Funct Integr Genomics ; 16(5): 465-80, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27443314

RESUMO

Seagrass meadows are disappearing at alarming rates as a result of increasing coastal development and climate change. The emergence of omics and molecular profiling techniques in seagrass research is timely, providing a new opportunity to address such global issues. Whilst these applications have transformed terrestrial plant research, they have only emerged in seagrass research within the past decade; In this time frame we have observed a significant increase in the number of publications in this nascent field, and as of this year the first genome of a seagrass species has been sequenced. In this review, we focus on the development of omics and molecular profiling and the utilization of molecular markers in the field of seagrass biology. We highlight the advances, merits and pitfalls associated with such technology, and importantly we identify and address the knowledge gaps, which to this day prevent us from understanding seagrasses in a holistic manner. By utilizing the powers of omics and molecular profiling technologies in integrated strategies, we will gain a better understanding of how these unique plants function at the molecular level and how they respond to on-going disturbance and climate change events.


Assuntos
Ecossistema , Genoma de Planta/genética , Alga Marinha/genética , Mudança Climática , Oceanos e Mares
13.
G3 (Bethesda) ; 5(10): 1991-8, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26206349

RESUMO

Genomic selection (GS) is becoming an important selection tool in crop breeding. In this study, we compared the ability of different GS models to predict time to young microspore (TYM), a flowering time-related trait, spike grain number under control conditions (SGNC) and spike grain number under osmotic stress conditions (SGNO) in two wheat biparental doubled haploid populations with unrelated parents. Prediction accuracies were compared using BayesB, Bayesian least absolute shrinkage and selection operator (Bayesian LASSO / BL), ridge regression best linear unbiased prediction (RR-BLUP), partial least square regression (PLS), and sparse partial least square regression (SPLS) models. Prediction accuracy was tested with 10-fold cross-validation within a population and with independent validation in which marker effects from one population were used to predict traits in the other population. High prediction accuracies were obtained for TYM (0.51-0.84), whereas moderate to low accuracies were observed for SGNC (0.10-0.42) and SGNO (0.27-0.46) using cross-validation. Prediction accuracies based on independent validation are generally lower than those based on cross-validation. BayesB and SPLS outperformed all other models in predicting TYM with both cross-validation and independent validation. Although the accuracies of all models are similar in predicting SGNC and SGNO with cross-validation, BayesB and SPLS had the highest accuracy in predicting SGNC with independent validation. In independent validation, accuracies of all the models increased by using only the QTL-linked markers. Results from this study indicate that BayesB and SPLS capture the linkage disequilibrium between markers and traits effectively leading to higher accuracies. Excluding markers from QTL studies reduces prediction accuracies.


Assuntos
Flores/genética , Genética Populacional , Haploidia , Modelos Genéticos , Fenótipo , Seleção Genética , Triticum/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Reprodutibilidade dos Testes
14.
J Exp Bot ; 66(5): 1489-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25563969

RESUMO

Seagrasses are flowering plants which grow fully submerged in the marine environment. They have evolved a range of adaptations to environmental challenges including light attenuation through water, the physical stress of wave action and tidal currents, high concentrations of salt, oxygen deficiency in marine sediment, and water-borne pollination. Although, seagrasses are a key stone species of the costal ecosystems, many questions regarding seagrass biology and evolution remain unanswered. Genome sequence data for the widespread Australian seagrass species Zostera muelleri were generated and the unassembled data were compared with the annotated genes of five sequenced plant species (Arabidopsis thaliana, Oryza sativa, Phoenix dactylifera, Musa acuminata, and Spirodela polyrhiza). Genes which are conserved between Z. muelleri and the five plant species were identified, together with genes that have been lost in Z. muelleri. The effect of gene loss on biological processes was assessed on the gene ontology classification level. Gene loss in Z. muelleri appears to influence some core biological processes such as ethylene biosynthesis. This study provides a foundation for further studies of seagrass evolution as well as the hormonal regulation of plant growth and development.


Assuntos
Etilenos/metabolismo , Genoma de Planta , Zosteraceae/genética , Ecossistema , Genômica , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zosteraceae/metabolismo
15.
Plant Sci ; 229: 247-261, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25443851

RESUMO

Progress in improving abiotic stress tolerance of crop plants using classic breeding and selection approaches has been slow. This has generally been blamed on the lack of reliable traits and phenotyping methods for stress tolerance. In crops, abiotic stress tolerance is most often measured in terms of yield-capacity under adverse weather conditions. "Yield" is a complex trait and is determined by growth and developmental processes which are controlled by environmental signals throughout the life cycle of the plant. The use of model systems has allowed us to gradually unravel how plants grow and develop, but our understanding of the flexibility and opportunistic nature of plant development and its capacity to adapt growth to environmental cues is still evolving. There is genetic variability for the capacity to maintain yield and productivity under abiotic stress conditions in crop plants such as cereals. Technological progress in various domains has made it increasingly possible to mine that genetic variability and develop a better understanding about the basic mechanism of plant growth and abiotic stress tolerance. The aim of this paper is not to give a detailed account of all current research progress, but instead to highlight some of the current research trends that may ultimately lead to strategies for stress-proofing crop species. The focus will be on abiotic stresses that are most often associated with climate change (drought, heat and cold) and those crops that are most important for human nutrition, the cereals.


Assuntos
Desenvolvimento Vegetal , Estresse Fisiológico , Adaptação Fisiológica/genética , Modelos Biológicos , Plantas/genética
16.
Plant Biotechnol J ; 12(6): 787-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24646323

RESUMO

High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence-absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.


Assuntos
Variação Genética , Genoma de Planta/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Triticum/genética , Alelos , Mapeamento Cromossômico , Análise por Conglomerados , Frequência do Gene/genética , Loci Gênicos , Marcadores Genéticos , Genótipo
17.
Funct Plant Biol ; 39(7): 539-552, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480806

RESUMO

The United Nations Food and Agriculture Organisation (FAO) forecasts a 34% increase in the world population by 2050. As a consequence, the productivity of important staple crops such as cereals needs to be boosted by an estimated 43%. This growth in cereal productivity will need to occur in a world with a changing climate, where more frequent weather extremes will impact on grain productivity. Improving cereal productivity will, therefore, not only be a matter of increasing yield potential of current germplasm, but also of improving yield stability through enhanced tolerance to abiotic stresses. Successful reproductive development in cereals is essential for grain productivity and environmental constraints (drought, cold, frost, heat and waterlogging) that are associated with climate change are likely to have severe effects on yield stability of cereal crops. Currently, genetic gains conferring improved abiotic stress tolerance in cereals is hampered by the lack of reliable screening methods, availability of suitable germplasm and poor knowledge about the physiological and molecular underpinnings of abiotic stress tolerance traits.

18.
Plant Sci ; 181(4): 331-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21889038

RESUMO

Grain number is the only yield component that is directly associated with increased grain yield in important cereal crops like wheat. Historical yield studies show that increases in grain yield are always accompanied by an increase in grain number. Adverse weather conditions can cause severe fluctuations in grain yield and substantial yield losses in cereal crops. The problem is global and despite its impact on world food production breeding and selection approaches have only met with limited success. A specific period during early reproductive development, the young microspore stage of pollen development, is extremely vulnerable to abiotic stress in self-fertilising cereals (wheat, rice, barley, sorghum). A better understanding of the physiological and molecular processes that lead to stress-induced pollen abortion may provide us with the key to finding solutions for maintaining grain number under abiotic stress conditions. Due to the complexity of the problem, stress-proofing our main cereal crops will be a challenging task and will require joint input from different research disciplines.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Adaptação Fisiológica/genética , Grão Comestível/citologia , Grão Comestível/genética , Reguladores de Crescimento de Plantas/metabolismo , Reprodução/fisiologia
19.
Plant Physiol ; 156(2): 647-62, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21502188

RESUMO

Drought stress at the reproductive stage causes pollen sterility and grain loss in wheat (Triticum aestivum). Drought stress induces abscisic acid (ABA) biosynthesis genes in anthers and ABA accumulation in spikes of drought-sensitive wheat varieties. In contrast, drought-tolerant wheat accumulates lower ABA levels, which correlates with lower ABA biosynthesis and higher ABA catabolic gene expression (ABA 8'-hydroxylase). Wheat TaABA8'OH1 deletion lines accumulate higher spike ABA levels and are more drought sensitive. ABA treatment of the spike mimics the effect of drought, causing high levels of sterility. ABA treatment represses the anther cell wall invertase gene TaIVR1, and drought-tolerant lines appeared to be more sensitive to the effect of ABA. Drought-induced sterility shows similarity to cold-induced sterility in rice (Oryza sativa). In cold-stressed rice, the rate of ABA accumulation was similar in cold-sensitive and cold-tolerant lines during the first 8 h of cold treatment, but in the tolerant line, ABA catabolism reduced ABA levels between 8 and 16 h of cold treatment. The ABA biosynthesis gene encoding 9-cis-epoxycarotenoid dioxygenase in anthers is mainly expressed in parenchyma cells surrounding the vascular bundle of the anther. Transgenic rice lines expressing the wheat TaABA8'OH1 gene under the control of the OsG6B tapetum-specific promoter resulted in reduced anther ABA levels under cold conditions. The transgenic lines showed that anther sink strength (OsINV4) was maintained under cold conditions and that this correlated with improved cold stress tolerance. Our data indicate that ABA and ABA 8'-hydroxylase play an important role in controlling anther ABA homeostasis and reproductive stage abiotic stress tolerance in cereals.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Homeostase , Oryza/fisiologia , Estresse Fisiológico , Triticum/fisiologia , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Temperatura Baixa , Secas , Flores/anatomia & histologia , Flores/citologia , Flores/efeitos dos fármacos , Flores/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Homeostase/efeitos dos fármacos , Cinética , Oryza/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reprodução/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Triticum/efeitos dos fármacos , Triticum/genética
20.
Plant Physiol ; 153(2): 757-72, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20357136

RESUMO

Arabidopsis (Arabidopsis thaliana) RAP2.2 (At3g14230) is an APETALA2/ethylene response factor-type transcription factor that belongs to the same subfamily as the rice (Oryza sativa) submergence tolerance gene SUB1A. RAP2.2 is expressed at constitutively high levels in the roots and at lower levels in the shoots, where it is induced by darkness. Effector studies and analysis of ethylene signal transduction mutants indicate that RAP2.2 is induced in shoots by ethylene and functions in an ethylene-controlled signal transduction pathway. Overexpression of RAP2.2 resulted in improved plant survival under hypoxia (low-oxygen) stress, whereas lines containing T-DNA knockouts of the gene had poorer survival rates than the wild type. This indicates that RAP2.2 is important in a plant's ability to resist hypoxia stress. Observation of the expression pattern of 32 low-oxygen and ethylene-associated genes showed that RAP2.2 affects only part of the low-oxygen response, particularly the induction of genes encoding sugar metabolism and fermentation pathway enzymes, as well as ethylene biosynthesis genes. Our results provide a new insight on the regulation of gene expression under low-oxygen conditions. Lighting plays an important regulatory role and is intertwined with hypoxia conditions; both stimuli may act collaboratively to regulate the hypoxic response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Etilenos/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Luz , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Alinhamento de Sequência , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...