Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 142(11): 114308, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25796250

RESUMO

The rotational spectrum of the van der Waals complex NH3-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112-139 GHz. Newly observed and assigned transitions belong to the K = 0-0, K = 1-1, K = 1-0, and K = 2-1 subbands correlating with the rotationless (jk)NH3 = 00 ground state of free ortho-NH3 and the K = 0-1 and K = 2-1 subbands correlating with the (jk)NH3 = 11 ground state of free para-NH3. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH3-CO and para-NH3-CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH3-CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy De = 359.21 cm(-1). The bound rovibrational levels of the NH3-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 210.43 and 218.66 cm(-1) for ortho-NH3-CO and para-NH3-CO, respectively.

2.
Bioorg Khim ; 38(1): 70-7, 2012.
Artigo em Russo | MEDLINE | ID: mdl-22792708

RESUMO

Spatial structure of the influenza virus A/Puerto Rico/8/34 (PR8, subtype H1N1) M1 protein in a solution and composition of the virion was studied by tritium planigraphy technique. The special algorithm for modeling of the spatial structure is used to simulate the experiment, as well as a set of algorithms predicting secondary structure and disordered regions in proteins. Tertiary structures were refined using the program Rosetta. To compare the structures in solution and in virion, also used the X-ray diffraction data for NM-domain. The main difference between protein structure in solution and crystal is observed in the contact region of N- and M-domains, which are more densely packed in the crystalline state. Locations include the maximum label is almost identical to the unstructured regions of proteins predicted by bioinformatics analysis. These areas are concentrated in the C-domain and in the loop regions between the M-, N-, and C-domains. Analytical centrifugation and dynamic laser light scattering confirm data of tritium planigraphy. Anomalous hydrodynamic size, and low structuring of the M1 protein in solution were found. The multifunctionality of protein in the cell appears to be associated with its plastic tertiary structure, which provides at the expense of unstructured regions of contact with various molecules-partners.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , Modelos Moleculares , Proteínas da Matriz Viral/química , Vírion/química , Estrutura Terciária de Proteína , Difração de Raios X
3.
Biofizika ; 56(6): 1024-37, 2011.
Artigo em Russo | MEDLINE | ID: mdl-22279745

RESUMO

The results of proteins spatial structure modeling using the tritium planigraphy technique are presented. The knowledge of three-dimensional structure of macromolecules is extremely necessary to understand the basic mechanisms of interaction in biological systems and complex technological processes. Known limitations of the X-ray analysis (crystal state) and NMR (molecular weight) make it necessary to seek new approaches to modeling the spatial structure of proteins. Semiempirical tritium planigraphy technique is one of these approaches. The method is based on the bombardment of the object by beam of hot tritium atoms (E(at) > or = 0.3 eV) and a computer simulation experiment. On the example of proteins of the different structural classes we set that by using this integrated approach can be obtained by three-dimensional model of the structure, well consistent with the data of X-ray analysis. An important factor is a sequence search of contacts between secondary structure elements: the best fit model with the native structure is achieved by assembling the elements of a vector in the sequence from the N- to C-terminus of the polypeptide chain.


Assuntos
Modelos Moleculares , Proteínas/química , Trítio/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...