Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(1-2): 015201, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583210

RESUMO

High-intensity laser solid interactions are capable of generating attosecond light bursts via high-harmonic generation-most work focuses on single beam interactions. In this paper, we perform a numerical investigation on the role of wavelength and polarization in relativistic, high-harmonic generation from normal-incidence, two-beam interactions off plasma mirrors. We find that the two-beam harmonic-generation mechanism is a robust process described by a set of well-defined selection rules. We demonstrate that the emitted harmonics from normal-incidence interactions exhibit an intensity optimization when the incident fields are of equal intensity for two-color circularly polarized fields.

2.
Phys Rev Lett ; 129(13): 135001, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206410

RESUMO

Short-pulse, laser-solid interactions provide a unique platform for studying complex high-energy-density matter. We present the first demonstration of solid-density, micron-scale keV plasmas uniformly heated by a high-contrast, 400 nm wavelength laser at intensities up to 2×10^{21} W/cm^{2}. High-resolution spectral analysis of x-ray emission reveals uniform heating up to 3.0 keV over 1 µm depths. Particle-in-cell simulations indicate the production of a uniformly heated keV plasma to depths of 2 µm. The significant bulk heating and presence of highly ionized ions deep within the target are attributed to the few MeV hot electrons that become trapped and undergo refluxing within the target sheath fields. These conditions enabled the differentiation of atomic physics models of ionization potential depression in high-energy-density environments.

3.
Opt Express ; 29(6): 9123-9136, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820346

RESUMO

Intense few-cycle laser pulses have a breadth of applications in high energy density science, including particle acceleration and x-ray generation. Multi-amplifier laser system pulses have durations of tens of femtoseconds or longer. To achieve high intensities at the single-cycle limit, a robust and efficient post-compression scheme is required. We demonstrate a staged compression technique using self-phase modulation in thin dielectric media, in which few-cycle pulses can be produced. The few-cycle pulse is then used to generate extreme ultravoilet light via high harmonic generation at strong field intensities and to generate MeV electron beams via laser solid interactions at relativistic intensities.

4.
Phys Rev Lett ; 124(11): 114801, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242688

RESUMO

We report on the experimental observation of a decreased self-injection threshold by using laser pulses with circular polarization in laser wakefield acceleration experiments in a nonpreformed plasma, compared to the usually employed linear polarization. A significantly higher electron beam charge was also observed for circular polarization compared to linear polarization over a wide range of parameters. Theoretical analysis and quasi-3D particle-in-cell simulations reveal that the self-injection and hence the laser wakefield acceleration is polarization dependent and indicate a different injection mechanism for circularly polarized laser pulses, originating from larger momentum gain by electrons during above threshold ionization. This enables electrons to meet the trapping condition more easily, and the resulting higher plasma temperature was confirmed via spectroscopy of the XUV plasma emission.

5.
Phys Rev Lett ; 110(17): 175002, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679739

RESUMO

Coherent x-ray beams with a subfemtosecond (<10(-15) s) pulse duration will enable measurements of fundamental atomic processes in a completely new regime. High-order harmonic generation (HOHG) using short pulse (<100 fs) infrared lasers focused to intensities surpassing 10(18) W cm(-2) onto a solid density plasma is a promising means of generating such short pulses. Critical to the relativistic oscillating mirror mechanism is the steepness of the plasma density gradient at the reflection point, characterized by a scale length, which can strongly influence the harmonic generation mechanism. It is shown that for intensities in excess of 10(21) W cm(-2) an optimum density ramp scale length exists that balances an increase in efficiency with a growth of parametric plasma wave instabilities. We show that for these higher intensities the optimal scale length is c/ω0, for which a variety of HOHG properties are optimized, including total conversion efficiency, HOHG divergence, and their power law scaling. Particle-in-cell simulations show striking evidence of the HOHG loss mechanism through parametric instabilities and relativistic self-phase modulation, which affect the produced spectra and conversion efficiency.

6.
Phys Rev Lett ; 110(1): 015003, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383801

RESUMO

Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-µm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.


Assuntos
Elétrons , Lasers , Magnetismo , Modelos Teóricos , Tecnologia Radiológica/métodos , Aceleradores de Partículas , Análise Espectral/métodos
7.
Phys Rev Lett ; 108(17): 175005, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680876

RESUMO

Short pulse laser interactions at intensities of 2×10(21) W cm(-2) with ultrahigh contrast (10(-15)) on submicrometer silicon nitride foils were studied experimentally by using linear and circular polarizations at normal incidence. It was observed that, as the target decreases in thickness, electron heating by the laser begins to occur for circular polarization leading to target normal sheath acceleration of contaminant ions, while at thicker targets no acceleration or electron heating is observed. For linear polarization, all targets showed exponential energy spreads with similar electron temperatures. Particle-in-cell simulations demonstrate that the heating is due to the rapid deformation of the target that occurs early in the interaction. These experiments demonstrate that finite spot size effects can severely restrict the regime suitable for radiation pressure acceleration.

8.
Phys Rev Lett ; 107(6): 065003, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902332

RESUMO

By using temporal pulse shaping of high-contrast, short pulse laser interactions with solid density targets at intensities of 2 × 10(21) W cm(-2) at a 45° incident angle, we show that it is possible to reproducibly generate quasimonoenergetic proton and ion energy spectra. The presence of a short pulse prepulse 33 ps prior to the main pulse produced proton spectra with an energy spread between 25% and 60% (ΔE/E) with energy of several MeV, with light ions becoming quasimonoenergetic for 50 nm targets. When the prepulse was removed, the energy spectra was broad. Numerical simulations suggest that expansion of the rear-side contaminant layer allowed for density conditions that prevented the protons from being screened from the sheath field, thus providing a low energy cutoff in the observed spectra normal to the target surface.

9.
Phys Rev Lett ; 105(3): 034801, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867770

RESUMO

Stimulated Raman side scattering of an ultrashort high power laser pulse is studied in experiments on laser wakefield acceleration. Experiments and simulations reveal that stimulated Raman side scattering occurs at the beginning of the interaction, that it contributes to the evolution of the pulse prior to wakefield formation, and also that it affects the quality of electron beams generated. The relativistic shift of the plasma frequency is measured.

10.
Phys Rev Lett ; 104(2): 025004, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20366605

RESUMO

Experimental studies of electrons produced in a laser wakefield accelerator indicate trapping initiated by ionization of target gas atoms. Targets composed of helium and controlled amounts of various gases were found to increase the beam charge by as much as an order of magnitude compared to pure helium at the same electron density and decrease the beam divergence from 5.1+/-1.0 to 2.9+/-0.8 mrad. The measurements are supported by particle-in-cell modeling including ionization. This mechanism should allow generation of electron beams with lower emittance and higher charge than in preionized gas.

11.
Nature ; 461(7262): 377-80, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19759616

RESUMO

Electric fields induce motion in many fluid systems, including polymer melts, surfactant micelles and colloidal suspensions. Likewise, electric fields can be used to move liquid drops. Electrically induced droplet motion manifests itself in processes as diverse as storm cloud formation, commercial ink-jet printing, petroleum and vegetable oil dehydration, electrospray ionization for use in mass spectrometry, electrowetting and lab-on-a-chip manipulations. An important issue in practical applications is the tendency for adjacent drops to coalesce, and oppositely charged drops have long been assumed to experience an attractive force that favours their coalescence. Here we report the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to 'bounce' off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops, and propose that this temporary bridge is unstable with respect to capillary pressure when it forms in an electric field exceeding a critical strength. The observation of oppositely charged drops bouncing rather than coalescing in strong electric fields should affect our understanding of any process involving charged liquid drops, including de-emulsification, electrospray ionization and atmospheric conduction.

12.
Opt Express ; 14(21): 10073-8, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19529401

RESUMO

Aperiodic multilayers have been designed for various applications, using numeric algorithms and analytical solutions, for many years with varying levels of success. This work developed a more realistic model for simulating aperiodic Mo/Si multilayers to be used in these algorithms by including the formation of MoSi(2). Using a genetic computer code we were able to optimize a 45 masculine multilayer for a large bandpass reflection multilayer that gave good agreement with the model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...