Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(42): 16896-16903, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37850513

RESUMO

Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO2 cavities versus time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology.

3.
J Chem Phys ; 157(19): 191101, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414453

RESUMO

Despite the proven impermeability of graphene toward most standard gases, graphene/graphite sealed SiO2 cavities always exhibit a nonzero leak rate, and the physical leakage mechanism is still unclear. By measuring leak rates of different gases for the same cavities sealed by ultrathin graphite under identical conditions, we find that the leak rates generally depend on the kinetic diameter of the gas molecules, which implies that the leakage is caused by a molecular sieving mechanism. By comparing different samples, we find that the leak rate of any gas in a particular sample is well predicted by the leak rate of N2 in that sample. In addition, we observe enhanced leak rates of water-soluble molecules. We infer that the leakage path (i.e., the graphene/graphite-SiO2 interface) favors hydrophilic species.

4.
J Phys Chem C Nanomater Interfaces ; 123(9): 5411-5420, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30873255

RESUMO

Understanding the electron transport through transition-metal dichalcogenide (TMDC)-based semiconductor/metal junctions is vital for the realization of future TMDC-based (opto-)electronic devices. Despite the bonding in TMDCs being largely constrained within the layers, strong Fermi-level pinning (FLP) was observed in TMDC-based devices, reducing the tunability of the Schottky barrier height. We present evidence that metal-induced gap states (MIGS) are the origin for the large FLP similar to conventional semiconductors. A variety of TMDCs (MoSe2, WSe2, WS2, and MoTe2) were investigated using high-spatial-resolution surface characterization techniques, permitting us to distinguish between defected and pristine regions. The Schottky barrier heights on the pristine regions can be explained by MIGS, inducing partial FLP. The FLP strength is further enhanced by disorder-induced gap states induced by transition-metal vacancies or substitutionals at the defected regions. Our findings emphasize the importance of defects on the electron transport properties in TMDC-based devices and confirm the origin of FLP in TMDC-based metal/semiconductor junctions.

5.
Langmuir ; 35(14): 4886-4892, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30883130

RESUMO

The friction of graphene on mica was studied using lateral force microscopy. We observed that intercalation of alcohol molecules significantly increases the friction of graphene, as compared to water. An increase of 1.8, 2.4, and 5.9 times in friction between the atomic force microscopy tip and  single-layer graphene was observed for methanol, ethanol, and 2-propanol, respectively. Moreover, the friction of graphene is found to be higher for single-layer graphene than for multilayer graphene. We attribute the increase in friction to the additional vibrational modes of alcohol molecules. The significant variation of the frictional characteristics of graphene at the nanoscale by altering the intercalant could open up applications for the next-generation nanolubricants and nanodevices.

6.
Langmuir ; 33(43): 11977-11985, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28985466

RESUMO

We use atomic force microscopy to in situ investigate the dynamic behavior of confined water at the interface between graphene and mica. The graphene is either uncharged, negatively charged, or positively charged. At high humidity, a third water layer will intercalate between graphene and mica. When graphene is negatively charged, the interface fills faster with a complete three layer water film, compared to uncharged graphene. As charged positively, the third water layer dewets the interface, either by evaporation into the ambient or by the formation of three-dimensional droplets under the graphene, on top of the bilayer. Our experimental findings reveal novel phenomena of water at the nanoscale, which are interesting from a fundamental point of view and demonstrate the direct control over the wetting properties of the graphene/water interface.

7.
Langmuir ; 32(26): 6582-90, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27275663

RESUMO

We present a new method to create dynamic nanobubbles. The nanobubbles are created between graphene and mica by reducing intercalated water to hydrogen. The nanobubbles have a typical radius of several hundred nanometers, a height of a few tens of nanometers and an internal pressure in the range of 0.5-8 MPa. Our approach paves the way to the realization of nanobubbles of which both size and internal pressure are tunable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...