RESUMO
BACKGROUND: We hypothesized that upregulation of angiotensin type 1 receptor (AT(1)R) and inducible nitric oxide (NO) synthase (iNOS) within the rostral ventrolateral medulla (RVLM) could contribute to two-kidney, one-clip (2K-1C) hypertension. METHODS: The experiments were performed in male Wistar rats, 6 weeks after the renal surgery. The animals were divided into control (SHAM, n = 18) and hypertensive groups (2K-1C, n = 18). Bilateral tissue punches were taken from sections containing the RVLM to perform iNOS gene expression analyses by the real-time PCR technique, and AT(1)R and iNOS protein expression analyses by western blotting. In addition, we injected losartan (1 nmol), an AT(1)R antagonist, and aminoguanidine (250 pmol), an iNOS inhibitor, bilaterally into the RVLM to analyze the mean arterial pressure (MAP) and renal sympathetic nerve activity (rSNA). RESULTS: iNOS mRNA expression levels were greater (P < 0.05) in the 2K-1C group compared to the SHAM group. Furthermore, the AT(1)R and iNOS protein expression were significantly increased in the RVLM of 2K-1C rats compared to SHAM rats. Injection of losartan into the RVLM reduced the MAP (11%) and rSNA (18%) only in the 2K-1C rats, whereas injection of aminoguanidine in the same region decreased the MAP (31%) and rSNA (34%) in hypertensive rats. CONCLUSIONS: The present study suggests that upregulation of AT(1)R and iNOS in the RVLM is important in the maintenance of high blood pressure and renal sympathetic activation in 2K-1C hypertension.
Assuntos
Tronco Encefálico/metabolismo , Hipertensão Renovascular/fisiopatologia , Rim/inervação , Óxido Nítrico Sintase Tipo II/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Expressão Gênica , Guanidinas/administração & dosagem , Hipertensão Renovascular/metabolismo , Rim/fisiopatologia , Masculino , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Biossíntese de Proteínas , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/genética , Sistema Nervoso Simpático/metabolismo , Regulação para CimaRESUMO
Sucrose-fed rats, a model of metabolic syndrome, are characterized by insulin resistance, obesity, hypertension, and high plasma levels of triacylglycerols and angiotensin II (Ang II). However, whether tissue renin-angiotensin system (RAS) is altered in metabolic syndrome is unclear. To study this issue, food ad libitum and water (C) or 20% sucrose solution (SC) were given to adult male Wistar rats, for 30 days. Body weight (BW), blood pressure (BP), epididymal adipose tissue (EPI) mass, rate of in vivo fatty acid (FA) synthesis in EPI, circulating glucose, insulin, leptin, angiotensins I and II, triacylglycerols, and plasma renin (PRA) and angiotensin-converting enzyme (ACE) activities were evaluated. In kidneys and EPI, gene and protein expression of type 1 (AT(1)) and 2 (AT(2)) Ang II receptors, ACE, angiotensinogen (AGT) as well as protein expression of angiotensin-converting enzyme 2 (ACE2) were determined. In both tissues, Ang I, Ang II and Ang-(1-7) contents were also measured by HPLC. In SC rats higher BP, EPI mass, circulating triacylglycerols, insulin, leptin, PRA and, Ang II were found. In EPI, the rate of in vivo FA synthesis was associated with increased Ang-(1-7), protein expression of AT(1) and AT(2) receptors, ACE2, AGT, and gene expression of AGT although a reduction in ACE activity and in adipose Ang I and Ang II contents was observed. In kidneys, AT(1) and AT(2), ACE and AGT gene and protein expression as well as protein expression of ACE2 were unaltered while Ang II, Ang-(1-7) and ACE activity increased. These RAS component changes seem to be tissue specific and possibly are related to enhancement of FA synthesis, EPI mass and hypertension.
Assuntos
Tecido Adiposo/metabolismo , Angiotensina I/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Sacarose/administração & dosagem , Tecido Adiposo/enzimologia , Enzima de Conversão de Angiotensina 2 , Animais , Sequência de Bases , Glicemia/análise , Western Blotting , Cromatografia Líquida de Alta Pressão , Primers do DNA , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
A number of studies conducted in humans and in animals have observed that events occurring early in life are associated with the development of diseases in adulthood. Salt overload and restriction during pregnancy and lactation are responsible for functional (hemodynamic and hormonal) and structural alterations in adult offspring. Our group observed that lower birth weight and insulin resistance in adulthood is associated with salt restriction during pregnancy. On the other hand, perinatal salt overload is associated with higher blood pressure and higher renal angiotensin II content in adult offspring. Therefore, we hypothesised that renin-angiotensin system (RAS) function is altered by changes in sodium intake during pregnancy. Such changes may influence fetoplacental blood flow and thereby fetal nutrient supply, with effects on growth in utero and, consequently, on birth weight. Female Wistar rats were fed low-salt (LS), normal-salt (NS), or high-salt (HS) diet, starting before conception and continuing until day 19 of pregnancy. Blood pressure, heart rate, fetuses and dams' body weight, placentae weight and litter size were measured on day 19 of pregnancy. Cardiac output, uterine and placental blood flow were also determined on day 19. Expressions of renin-angiotensin system components and of the TNF-alpha gene were evaluated in the placentae. Plasma renin activity (PRA) and plasma and tissue angiotensin-converting enzyme (ACE) activity, as well as plasma and placental levels of angiotensins I, II, and 1-7 were measured. Body weight and kidney mass were greater in HS than in NS and LS dams. Food intake did not differ among the maternal groups. Placental weight was lower in LS dams than in NS and HS dams. Fetal weight was lower in the LS group than in the NS and HS groups. The PRA was greater in LS dams than in NS and HS dams, although ACE activity (serum, cardiac, renal, and placental) was unaffected by the level of sodium intake. Placental levels of angiotensins I and II were lower in the HS group than in the NS and LS groups. Placental angiotensin receptor type 1 (AT(1)) gene expression and levels of thiobarbituric acid reactive substances (TBARS) were higher in HS dams, as were uterine blood flow and cardiac output. The degree of salt intake did not influence plasma sodium, potassium or creatinine. Although fractional sodium excretion was higher in HS dams than in NS and LS dams, fractional potassium excretion was unchanged. In conclusion, findings from this study indicate that the reduction in fetal weight in response to salt restriction during pregnancy does not involve alterations in uterine-placental perfusion or the RAS. Moreover, no change in fetal weight is observed in response to salt overload during pregnancy. However, salt overload did lead to an increase in placental weight and uterine blood flow associated with alterations in maternal plasma and placental RAS. Therefore, these findings indicate that changes in salt intake during pregnancy lead to alterations in uterine-placental perfusion and fetal growth.
Assuntos
Circulação Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sistema Renina-Angiotensina/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Útero/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Pressão Sanguínea/efeitos dos fármacos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Útero/metabolismoRESUMO
Dietary salt restriction is associated with evidence of low insulin sensitivity. The current study was undertaken to investigate whether sympathetic nervous system and l-arginine-nitric oxide pathway activities are linked to insulin resistance in rats under chronic low salt intake. Male Wistar rats were fed a low (LSD) or normal (NSD) salt diet from weaning to adulthood. A euglycemic hyperinsulinemic clamp was performed in 4 sub-groups on each diet: (1) sympathetic nervous system blockade (propranolol and prazosin), (2) vehicle, (3) L-arginine, and (4) D-arginine. Blood pressure, heart rate and metabolic measurements were done before and 45 min after drug infusion and at the end of the clamp. At baseline conditions, body weight, hematocrit, blood glucose, plasma insulin, cholesterol, and triacylglycerols were higher in LSD than in NSD rats. Systolic blood pressure was lower and heart rate was higher in rats on LSD than on NSD. Glucose uptake was lower on LSD compared to NSD. Sympathetic nervous system blockade and L-arginine did, and vehicle and D-arginine did not improve glucose uptake in LSD rats. On NSD there was no effect of any of the infused drugs. A positive correlation between plasma nitrate and nitrite at the end of clamp and glucose uptake was observed in L-arginine--but not in D-arginine-infused LSD rats. These results provide evidence that the sympathetic nervous system and the L-arginine-nitric oxide pathway are involved in the glucose uptake impairment induced by chronic dietary salt restriction.
Assuntos
Antagonistas Adrenérgicos alfa/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Arginina/farmacologia , Dieta Hipossódica , Resistência à Insulina/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Dieta , Glucose/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hiperinsulinismo/sangue , Insulina/sangue , Masculino , Óxido Nítrico/fisiologia , Prazosina/farmacologia , Propranolol/farmacologia , Ratos , Ratos Wistar , Sistema Nervoso Simpático/fisiologiaRESUMO
In the present study, newborn male Wistar rats were injected, subcutaneously, five times, every other day, with monosodium glutamate (MSG, 4 g/kg bw) or saline (as control, C), during the neonatal period. MSG animals developed destruction of the arcuate nuclei (ARC) with absence of NPY-immunoreactive cell bodies, which impaired both the food intake (baseline) and the 2-deoxy-D-glucose (2DG) glucoprivic feeding response. Increases in the immunoreactivity of corticotropin-releasing hormone-cell bodies in the paraventricular nuclei might have developed to compensate for the atrophy of the pituitary in MSG-treated rats. After systemic 2DG injection, neither the C nor the MSG rats increased their food intake, but they showed similar hyperglycemic responses, whereas plasma free fatty acids (FFA) increased only in the C group. In other groups, 2DG, norepinephrine (NE), neostigmine (NEO) and saline were intracerebroventricularly (i.c.v.) administered. In this condition, impairment of the hyperglycemic and food intake responses, associated to a lower increase in plasma FFA levels, were observed. As opposed to this, the MSG treatment gives support to NE effects, enhancing food intake, as well as plasma glucose and FFA levels. After NEO, plasma glucose increased only in the MSG group, while plasma FFA levels were elevated in the C rats. Taken together, the results obtained after MSG treatment point to a separate neural control of the hyperglycemic response and of the lipid mobilization when stimulated by central 2DG, NE or NEO administration. It seems likely that the excitatory neural pathway that controls lipid metabolism and is present in C rats was destroyed by the MSG treatment.
Assuntos
Glucose/deficiência , Glutamato de Sódio/farmacologia , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Glicemia/análise , Hormônio Liberador da Corticotropina/metabolismo , Desoxiglucose/administração & dosagem , Desoxiglucose/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos não Esterificados/sangue , Hiperglicemia/fisiopatologia , Injeções Intravenosas , Injeções Intraventriculares , Masculino , Neostigmina/administração & dosagem , Neostigmina/farmacologia , Neuropeptídeo Y/metabolismo , Norepinefrina/administração & dosagem , Norepinefrina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar , Glutamato de Sódio/administração & dosagemRESUMO
A severe restriction of sodium chloride intake has been associated with insulin resistance and obesity. The molecular mechanisms by which the low salt diet (LS) can induce insulin resistance have not yet been established. The c-jun N-terminal kinase (JNK) activity has been involved in the pathophysiology of obesity and induces insulin resistance by increasing inhibitory IRS-1(ser307) phosphorylation. In this study we have evaluated the regulation of insulin signaling, JNK activation and IRS-1(ser307) phophorylation in liver, muscle and adipose tissue by immunoprecipitation and immunoblotting in rats fed with LS or normal salt diet (NS) during 9 weeks. LS increased body weight, visceral adiposity, blood glucose and plasma insulin levels, induced insulin resistance and did not change blood pressure. In LS rats a decrease in PI3-K/Akt was observed in liver and muscle and an increase in this pathway was seen in adipose tissue. JNK activity and IRS-1(ser307) phosphorylation were higher in insulin-resistant tissues. In summary, the insulin resistance, induced by LS, is tissue-specific and is accompanied by activation of JNK and IRS-1(ser307) phosphorylation. The impairment of the insulin signaling in these tissues, but not in adipose tissue, may lead to increased adiposity and insulin resistance in LS rats.
Assuntos
Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Obesidade/etiologia , Fosfoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio na Dieta/administração & dosagem , Tecido Adiposo/metabolismo , Animais , Glicemia/análise , Immunoblotting , Imunoprecipitação , Insulina/sangue , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina , Fígado/metabolismo , Masculino , Músculos/metabolismo , Obesidade/metabolismo , Fosforilação , Ratos , Ratos WistarRESUMO
PTP1B has been shown to be a negative regulator of the insulin signal transduction in insulin resistant states. Herein we investigated IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of 10 and 28-week-old MSG-insulin resistant rats which represent different stages of insulin resistance. Our results demonstrated that the increase in PTP1B expression and/or association with IR in MSG animals may contribute to the impaired insulin signaling mainly in liver and muscle. Although, adipose tissue of 10-week-old MSG rats showed higher PTP1B expression and IR/PTP1B interaction, they were not sufficient to impair all insulin signaling since IRS-2 phosphorylation and association with PI3-kinase and Akt serine phosphorylation were increased, which may contribute for the increased adiposity of these animals. In 28-week-old-MSG rats there was an increase in IR/PTP1B interaction and reduced insulin signaling in liver, muscle and adipocytes, and a more pronounced insulin resistance.
Assuntos
Insulina/farmacologia , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Fosfatases/fisiologia , Receptor de Insulina/fisiologia , Transdução de Sinais , Glutamato de Sódio/administração & dosagem , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Envelhecimento , Animais , Animais Recém-Nascidos , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/química , Fígado/metabolismo , Masculino , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/análise , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Wistar , Tirosina/metabolismoRESUMO
Objective: The ligation of the left renal vein (LLVR) in man is a contraversial procedure in view of the risks of lesion to the renal parenchyma. With the objective of studying the morphologic and functional alterations caused by these lesions, we conducted experimental research with rats. Material and Methods: 64 male adult EPM1-WISTAR rats were used, divided into 8 groups - 4 for LLRV and four control. Each LLRV group and corresponding control group were sacrificed progressively on the 7th, 15th, 30th and 60th day after the initial surgery. Results: We found morphofunctional alterations only in animals that underwent LLRV in the four periods of sacrifice. The proteinuria creatinine in serum, testosterone in serum and serum corticosterone in serum showed practically no alteration in relation to the normal values for rats. Statistically significant severe histological lesions were found in the kidneys and testes of the LLRV groups. Lesions in the suprarenal glands were also present in these groups, but no sufficient to demonstrate statistical significance Conclusion: Based on these results we can conclude that the ligation of the left renal vein is a procedure of high risk in these animals.