Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 180: 114046, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395564

RESUMO

This study investigated the effects of diet and stage of lactation (SOL) on sensory profiles, texture, volatile profiles, and colour of Cheddar cheese. Cheddar cheese was manufactured from early-, mid-, and late-lactation milk obtained from seasonally calved cows (n = 54). Cows were assigned a diet; group 1: perennial ryegrass (GRS), group 2: total mixed ration (TMR), and group 3: partial mixed ration (PMR). Instrumental analysis was performed at 270 days (mature Cheddar). Sensory evaluation took place after 548 days (extra mature Cheddar). Toluene was the only volatile compound that was significantly influenced by diet. The trained panel rated early-lactation cheese as stronger than mid- and late- for cowy/barny flavour and late-lactation cheese as sweeter than early- and mid-lactation cheese. Mid-lactation cheese was liked least overall. Early-lactation cheeses were rated higher for 'crumbly' texture than mid- and late. Diet affected consumer ratings, with GRS and PMR cheese rated as more intense than TMR for flavour, aftertaste, and saltiness. Consumers reported that TMR cheese was lighter in colour compared to GRS cheese, which was supported by instrumental analysis. Consumers perceived GRS as more springy and less crumbly than TMR and PMR, while Texture Profile Analysis indicated that TMR was harder than GRS. Consumer segmentation was observed with two clear preference groups, one preferring GRS and one preferring TMR. For both groups, 'taste' seemed to be the main driver of liking, highlighting that consumer preference is most impacted by individual taste preferences.


Assuntos
Queijo , Feminino , Animais , Bovinos , Lactação , Paladar , Percepção Gustatória , Leite
2.
Food Chem ; 180: 150-155, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25766812

RESUMO

This study investigated the kinetics of immobilisation and release of riboflavin, amino acids and peptides from whey microbeads. Blank whey microbeads were placed in solutions of the compounds. As the volume of microbeads added to the solution was increased, the uptake of the compounds increased, to a maximum of 95% for the pentapeptide and 56%, 57% and 45% for the dipeptide, riboflavin and tryptophan respectively, however, the rate of uptake remained constant. The rate of uptake increased with increasing molecule hydrophobicity. The opposite was observed in the release studies, the more hydrophobic compounds had lower release rate constants (kr). When whey microbeads are used as sorbents, they show excellent potential to immobilise small hydrophobic molecules and minimise subsequent diffusion, even in high moisture environments.


Assuntos
Proteínas do Leite/química , Peptídeos/química , Riboflavina/química , Triptofano/química , Concentração de Íons de Hidrogênio , Cinética , Proteínas do Soro do Leite
3.
Food Chem ; 160: 46-52, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24799207

RESUMO

Whey microbeads manufactured using a cold-set gelation process, have been used to encapsulate bioactives. In this study whey microbeads were used to encapsulate riboflavin using 2 methods. Riboflavin was added to the microbead forming solution however diffusional losses of riboflavin occurred during the subsequent bead preparation. To overcome riboflavin loss, a second approach to 'load' whey microbeads by soaking in riboflavin was assessed. Significantly (p⩽0.05) higher concentrations of riboflavin were obtained in 'loaded' microbeads (361 mg/L) compared to riboflavin added to the microbead forming solution (48 mg/L). Riboflavin uptake by the microbeads was shown to be via a partition process. As partitioning is often driven by hydrophobic interactions the uptake of amino acids and peptides of varying hydrophobicities by the microbeads was examined. The % encapsulation increased with increasing molecule hydrophobicity with a maximum of 89% encapsulation. Whey microbeads are well suited to act as sorbents for encapsulation.


Assuntos
Peptídeos/administração & dosagem , Riboflavina/administração & dosagem , Aminoácidos/química , Animais , Cloreto de Cálcio/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Microesferas , Proteínas do Leite/química , Peptídeos/química , Riboflavina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...