Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 257: 119414, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38871271

RESUMO

The feasibility of creating light-emitting plants by immobilizing Vibrio campbellii RMT1 on the rhizospheric zone of Aglaonema sp. 'Banlangngoen' was investigated in depth, including bacteria translocation and plant response. Results from scanning electron microscope showed that an inorganic salt-containing medium affected the root. However, transmission electron microscope results displayed bacteria translocation through the root to the leaf and colonized in the cytosol of vascular tissues. Bacteria cell counts exhibited high colonization in the root zone, approximately 3.65 × 106 CFU/mL, resulting in a light-emitting intensity increase of 23.68-fold higher than the control after the first week. Nevertheless, light microscope revealed that inorganic salts in the culture medium led to enlarged air spaces, resulting in leaf and stalk withering. Notably, spraying plants with calcium chloride (CaCl2) solution effectively mitigated salt stress, activated luminescence, and facilitated bacterial movement from roots to leaves. Additionally, CaCl2 contributed to ongoing salinity reduction in the culture medium, as evidenced by reduced malondialdehyde levels, alongside increased indole-3-acetic acid and salicylic acid concentrations, indicating plant defense responses. The interaction between plants and luminescent bacteria demonstrated the potential for producing glowing plants following CaCl2 application, addressing salinity stress, enhancing luminescence, and maintaining plant growth.


Assuntos
Cloreto de Cálcio , Vibrio , Vibrio/efeitos dos fármacos , Cloreto de Cálcio/farmacologia , Luminescência , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia
2.
Environ Res ; 252(Pt 4): 119066, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714219

RESUMO

In the practical application of wetland microbial fuel cells (WMFCs), suitable designs and stacked connection systems have consistently been employed to increase and harvest power generation. Our study compares different WMFCs designs and demonstrates that the cylinder pot design outperforms the small hanging pot design in terms of electrical energy production. Moreover, power generation from the cylinder pot can be further optimized through separator modification and stacked connections. The stacked WMFCs design exhibited no voltage reversal, with an average power output ranging from 0.03 ± 0.01 mW (single pot) to 0.11 ± 0.05 mW (stacked connection of 5 pots) over a 60-day operational period. Additionally, our study identifies distinct patterns in both anodic and cathodic physiochemical factors including electrical conductivity (EC), pH, and nitrate (NO3-), highlighting the significant influence of plant involvement on altering concentrations and levels in different electrode zones. The WMFCs bioelectricity production system, employing 15 pots stacked connections achieves an impressive maximum power density of 9.02 mW/m2. The system's practical application is evidenced by its ability to successfully power a DC-DC circuit and charge a 1.2 V AAA battery over a period of 30 h, achieving an average charging rate of 0.0.2 V per hour.


Assuntos
Fontes de Energia Bioelétrica , Áreas Alagadas , Condutividade Elétrica , Nitratos/análise , Eletrodos
3.
Photochem Photobiol Sci ; 23(5): 973-985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622375

RESUMO

The concept of utilizing light-emitting plants (LEPs) as an alternative to traditional electricity-based lighting has garnered interest. However, challenges persist due to the need for genetic modification or chemical infusion in current LEPs. To address this, researchers have investigated the interaction between plants and luminous bacteria, specifically Vibrio campbellii, which can efficiently be translocated into Aglaonema cochinchinense tissues through the roots to produce LEPs. This study concentrated on examining light intensity and enhancing luminescence by growing plants and spraying them with various media substances. The results indicated that V. campbellii successfully translocated into the plant tissue via the root system and accumulated a high number of bacteria in the stems, approximately 8.46 × 104 CFU/g, resulting in a light-emitting intensity increase of 12.13-fold at 48 h, and then decreased after 30 h. Interestingly, luminescence stimulation by spraying the growth medium managed to induce the highest light emission, reaching 14.84-fold at 48 h, though it had some negative effects on the plant. Conversely, spraying plants with CaCl2 on the leaves prolonged light emission for a longer duration (42 h after spraying) and had a positive effect on plant health, it maintained ion homeostasis and reduced-MDA content. This study highlights the potential of using V. campbellii and CaCl2 spraying for the future development of practical light-emitting plants.


Assuntos
Vibrio , Vibrio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Luz , Rizosfera , Luminescência
4.
Environ Sci Pollut Res Int ; 31(7): 10609-10620, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198091

RESUMO

In this study, the addition of γ-aminobutyric acid (GABA), Bacillus pumilus, or both, was found to enhance rice growth and yield while significantly decreasing arsenic (As) accumulation in Oryza sativa rice tissues. GABA emerged as a regulator of iron (Fe) homeostasis, acting as a signaling modulator that influenced phytosiderophore secretions in the plant. Meanwhile, B. pumilus directly increased Fe levels through siderophore production, promoting the development of Fe-rich rice plants. Subsequently, Fe competed with As uptake at the root surface, leading to decreased As levels and translocation to the grains. Furthermore, the addition of GABA and B. pumilus optimized rice indole-3 acetic acid (IAA) contents, thereby adjusting cell metabolite balance under As stress. This adjustment results in low malondialdehyde (MDA) contents in the leaves and roots during the early and late vegetative phases, effectively reducing oxidative stress. When added to As-contaminated soil, GABA and B. pumilus effectively maintained endogenous GABA levels and exhibited low ROS generation, similar to normal soil. Concurrently, GABA and B. pumilus significantly downregulated the activity of OsLsi1, OsLsi2, and OsABCC1 in roots, reducing As uptake through roots, shoots, and grains, respectively. These findings suggest that GABA and B. pumilus additions impede As translocation through grains, ultimately enhancing rice productivity under As stress.


Assuntos
Arsênio , Bacillus pumilus , Oryza , Poluentes do Solo , Arsênio/análise , Raízes de Plantas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Solo , Poluentes do Solo/análise
5.
Environ Sci Pollut Res Int ; 30(42): 96163-96180, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37566335

RESUMO

Constructed wetlands (CWs) have proven to be effective and environmentally friendly for removing pollutants, while microbial fuel cells (MFCs) offer the potential for electricity generation. Thus, this study evaluated the performance of three CW-MFC systems (zigzag, single-column, and triple-column continuous) for domestic wastewater treatment and electricity generation. Results showed that parallel connection of CW-MFCs significantly improved power generation compared to series connection. Additionally, using three copper wires to connect carbon fiber felt electrodes demonstrated superior pollutant capture capabilities compared to a single copper wire. During the 14-day testing period, the single-column system achieved the highest power density of 5.55 mW m-2, followed closely by the triple-column continuous system at 4.77 mW m-2. In contrast, the zigzag system exhibited a lower power density of 2.49 mW m-2. Interestingly, the implementation of facultative anaerobic conditions in the anode, along with the application of a plastic bag cover, facilitated the maintenance of anaerobic conditions in both the single-column and triple-column continuous systems. This resulted in increased power density and reduced internal resistance. In contrast, the zigzag system, with its larger surface area, aeration, and circulation, exhibited higher internal resistance and lower current dissipation. Despite its inferior electricity generation performance, the zigzag system demonstrated higher efficiency removal of chemical oxygen demand (COD), nitrate (NO3-), and phosphate (PO43-) than the single-column system. This can be attributed to the extended contact time, resulting in enhanced pollutant removal. Overall, the multi-column continuous system shows promise as a viable approach for simultaneous domestic wastewater treatment and electricity production, offering potential benefits for sustainable wastewater management.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Áreas Alagadas , Cobre , Eletricidade , Eletrodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-37421531

RESUMO

Glowing Episcia lilacina was generated through foliar application of the bioluminescent bacterium Vibrio campbellii RMT1. Firstly, different nutrient formulas were tested, incorporating yeast extract and various inorganic salts, such as CaCl2, MgCl2, MgSO4, KH2PO4, K2HPO4, and NaCl, in order to enhance bacterial growth and light emission. The combination of 0.15% of yeast extract and 0.3% of CaCl2 in a nutrient broth (NB) + 1% NaCl medium extended light emission to 24 h and resulted in higher light intensity compared to other combinations of yeast extract and inorganic salts. The peak intensity reached approximately 1.26 × 108 relative light units (RLU) at 7 h. The optimal presence of inorganic salt ions likely contributed to enhanced light emission, while the yeast extract acted as a nutrient source. Secondly, the effect of proline on salt-induced stress symptoms was investigated by applying 20 mM proline to the glowing plant. Additionally, a 0.5% agar nutrient was spread on the leaves prior to bacteria application to support bacterial growth and penetration. Exogenous proline application led to a significant accumulation of proline in plant cells, resulting in decreased malondialdehyde (MDA) levels. However, the proline accumulation also reduced the light intensity of the bioluminescent bacteria. This study demonstrates the potential for generating light on a living plant using bioluminescent bacteria. Further understanding of the interaction between plants and light-emitting bacteria could contribute to the development of sustainably light-emitting plants.

7.
J Environ Manage ; 300: 113720, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34521007

RESUMO

The pollutant removal efficiency of traditionally constructed wetlands (CWs) is often limited due to low interaction time between wastewater and the CW matrix (plants, microbes, and substrates). A zigzag-horizontal subsurface flow constructed wetland with effluent recirculation (Z-HSSF + ER) was developed to improve removal efficiency. Echinodorus cordifolius plants were used in this study. The efficiency of the systems was evaluated using eutrophic wastewater. The results showed that the developed systems exhibited the high removal efficiency of algal cells, PO43-, and NO3- (97%, 70%, and 100%, respectively), within 5 days. Algal cells were removed by the interception mechanism of gravel and zigzag baffles. PO43- and NO3- in the eutrophic wastewater was mainly removed by E. cordifolius including rhizobacteria and other microorganisms. The long flow pathway created by the installation of zigzag baffles combined with effluent recirculation provides high dissolved oxygen (DO) in the systems and increases the interaction time between wastewater and the CW matrix, thus improving the pollutant removal efficiency of CWs.


Assuntos
Alismataceae , Áreas Alagadas , Plantas , Eliminação de Resíduos Líquidos , Águas Residuárias
8.
Environ Technol ; 41(27): 3607-3618, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31081467

RESUMO

Coir pith glucose syrup beads were used as a supporter in a biofilter system. The modified coir pith beads provided a carbon source and controlled humidity for microorganism growth for long-term operation without external nutrient supplementation. For the screening, Bacillus spp. were immobilised on coir pith beads and used for benzene bioremediation. The result showed that coir pith beads immobilised with Bacillus megaterium can remove on average 85-100% of the benzene (215-day operation). In addition, B. megaterium presented the ability to transform benzene to catechol. For an up-scaled application, a 25-L biofilter system was developed and tested in a closed 24-m3 container re-injected with 0.6 ppm benzene for 8 cycles. The system presented the ability to remove 100% of the benzene. This biofilter has the potential to be applied in a real benzene-contaminated site.


Assuntos
Bacillus megaterium , Benzeno , Adsorção , Biodegradação Ambiental , Glucose , Lignina/análogos & derivados , Nutrientes
9.
Chemosphere ; 239: 124724, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31505447

RESUMO

Combination of sulfuric acid modified bagasse activated carbon-bone biochar beads and Acinetobacter indicus screened from petroleum contaminated soil was the best condition for gaseous methyl tert-butyl ether (MTBE) removal. It was found that H2SO4 modified bagasse AC in powder form had higher adsorption capacity (989.33 mg g-1) than that in bead form (1.94 mg g-1). In addition, bone biochar in powder form (3.51 mg g-1) also had higher adsorption capacity than that in bead form (1.63 mg g-1). This was the fact that material beads contained high moisture content that inhibited the penetration of gaseous MTBE into the material. And a mixed material of H2SO4 modified bagasse AC-bone biochar beads had the highest adsorption capacity (2.22 mg g-1) compared to individual H2SO4 modified bagasse AC beads (1.94 mg g-1) and bone biochar beads (1.63 mg g-1) due to a mixed material had more rough surface and high surface area on its material. So, gaseous MTBE can penetrate through this material more easily. Although the maximum adsorption capacity of H2SO4 modified bagasse AC in powder form was the highest but microorganism cannot sustain and survive in this form for a long time. Therefore, the material beads were more suitable for microorganism to grow and degrade gaseous MTBE. Microorganism can degrade MTBE and caused no secondary wastes. Moreover, A. indicus was a novel strain for MTBE removal that has not been previously reported. Therefore, a combination of A. indicus-mixed material beads was a good choice for MTBE removal in a biofilter system.


Assuntos
Acinetobacter/metabolismo , Celulose/química , Carvão Vegetal/química , Éteres Metílicos/química , Acinetobacter/isolamento & purificação , Adsorção , Biodegradação Ambiental , Células Imobilizadas , Poluição Ambiental , Gases , Éteres Metílicos/isolamento & purificação , Éteres Metílicos/metabolismo , Petróleo , Microbiologia do Solo , Ácidos Sulfúricos/química , Gerenciamento de Resíduos/métodos
10.
Chemosphere ; 223: 448-454, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784751

RESUMO

Arsenic contaminated in rice plants can cause many physiological, biochemical and productivity in rice. This also had a negative impact on human health. To decrease arsenic in grains, a combination of leonardite as amendment and arsenic-resistance endophytic bacteria was investigated. The results showed that 1% (w/v) leonardite (91.86 ±â€¯2.04%) had the highest efficiency in adsorbing initial arsenic concentration of 2 mg L-1, which was higher than bagasse fly ash (16.25 ±â€¯3.97%), rice husk ash (10.36 ±â€¯1.28%), and sawdust fly ash (63.00 ±â€¯5.67%) under the same condition. This was due to the higher aluminium and iron contents of leonardite strongly binding to arsenic anions. Meanwhile, Bacillus pumilus had an ability to decrease arsenic accumulation in rice grains to levels below those achieved by Pseudomonas sp. and Bacillus thuringiensis. This was possibly due to B. pumilus producing higher siderophore. Interestingly, a combination of microbe and leonardite addition could decrease arsenic accumulation in grains to below the permissible limit (0.2 mg As kg-1 for inorganic arsenic). It could also reduce oxidative stress and showed down-regulation of Lsi1, Lsi2 and OsPT4 at the heading stage, which coincided with low arsenic and high silicon accumulation in roots. Therefore, this result could be used to decrease arsenic accumulation in grains in arsenic-contaminated paddy fields, improved rice plants defense and endured of arsenic stress, and increased rice productivity.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Endófitos/metabolismo , Minerais/farmacologia , Oryza/metabolismo , Bacillus pumilus/metabolismo , Grão Comestível/química , Humanos , Raízes de Plantas/metabolismo , Poluentes do Solo
11.
J Environ Manage ; 213: 11-19, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29477846

RESUMO

In this study, Echinodorus cordifolius was the best plant for arsenic removal compared to Cyperus alternifolius, Acrostichum aureum and Colocasia esculenta. Under arsenic stress, the combination of E. cordifolius with microbes (Bacillus subtilis and Arthrobacter creatinolyticus) was investigated. It was found that A. creatinolyticus, a native microbe, can endure arsenic toxicity, produce higher indole-3 acetic acid (IAA) and ammonium production better than B. subtilis. Interestingly, E. cordifolius-endophytic A. creatinolyticus interactions showed that dipping plant roots in A. creatinolyticus suspension for 5 min had the highest arsenic removal efficiency compared to dipping plant roots in A. creatinolyticus suspension for 2 h and inoculating A. creatinolyticus with E. cordifolius directly. Our findings indicated that under this inoculation condition, the inoculum could colonize from the roots to the shoots of the host tissues in order to avoid arsenic toxicity and favored arsenic removal by the host through plant growth-promoting traits, such as IAA production. Highest levels of IAA were found in plant tissues and the plants exhibited higher root elongation than other conditions. Moreover, low level of reactive oxygen species (ROS) was related to low arsenic stress. In addition, dipping E. cordifolius roots in A. creatinolyticus for 5 min was applied in a constructed wetland, the result showed higher arsenic removal than conventional method. Therefore, this knowledge can be applied at a real site for improving plant tolerance stress, plant growth stimulation, and enhancing arsenic remediation.


Assuntos
Alismataceae , Arsênio/isolamento & purificação , Arthrobacter , Áreas Alagadas , Raízes de Plantas , Poluição da Água
12.
J Hazard Mater ; 145(1-2): 250-5, 2007 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-17184913

RESUMO

This research involved the adsorption of synthetic reactive dye wastewater (SRDW) by chitin modified by sodium hypochlorite and original chitin in batch experiments. The comparison of maximum adsorption capacity used the Langmuir model to describe SRDW adsorption onto chitin and modified chitin under a system pH of 11.0. Maximum dye adsorption by chitin increased from 133mgg(-1) to 167mgg(-1) at temperatures of 30-60 degrees C, respectively. For modified chitin, the capacity decreased from 124mgg(-1) to 59mgg(-1) when the temperature increased from 30 degrees C to 60 degrees C, respectively. Both Na(2)SO(4) and Na(2)CO(3) increased in dye adsorption. The spectra of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometry confirmed the hydroxyl groups as functional groups of modified chitin, which affected the modification and the SRDW adsorption. The adsorbed dyes were eluted by distilled water and 1M NaOH to confirm the dye adsorption mechanism. Total elution of modified chitin and chitin were 92.76% and 55.29%, respectively. Although modified chitin had a maximum adsorption capacity less than chitin, elution of the dye from modified chitin was easier than chitin. Therefore, modified chitin could be suitable in a column system for dye pre-concentration as well as wastewater minimisation. In addition, the column study showed that modified chitin could be used for more than four cycles of adsorption and elution by distilled water.


Assuntos
Quitina/química , Resíduos Industriais/análise , Indústria Têxtil , Triazinas/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Porosidade , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA