Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731131

RESUMO

Background: This study investigated the effectiveness of dialectical behavior therapy (DBT) in patients with borderline personality disorder (BPD) during the COVID-19 pandemic, assessing negative affect, depression, and anxiety levels as indicators of health. Methods: A total of 287 participants were recruited, including BPD patients at different stages of treatment and the general population without a diagnosis of BPD. Questionnaires were used to assess the fear of COVID-19 and the referenced health indicators. Results: No differences were observed between groups in levels of fear of COVID-19, but there were differences in the health indicators studied. BPD patients in long-term treatment showed levels of negative affect similar to those of the general population, while those in early treatment stages exhibited significantly higher levels. However, no significant improvements were observed in levels of depression and anxiety in the long-term treatment group compared to those who underwent the initial treatment phase. Conclusions: These findings underscore the importance of effectively intervening in BPD, especially in stress-inducing situations such as the pandemic, and suggest the need to explore complementary approaches to addressing depression and anxiety in this clinical context.

2.
BMC Biol ; 16(1): 61, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859088

RESUMO

BACKGROUND: Hydrogen peroxide (H2O2) is generated as a by-product of metabolic reactions during oxygen use by aerobic organisms, and can be toxic or participate in signaling processes. Cells, therefore, need to be able to sense and respond to H2O2 in an appropriate manner. This is often accomplished through thiol switches: Cysteine residues in proteins that can act as sensors, and which are both scarce and finely tuned. Bacteria and eukaryotes use different types of such sensors-either a one-component (OxyR) or two-component (Pap1-Tpx1) redox relay, respectively. However, the biological significance of these two different signaling modes is not fully understood, and the concentrations and peroxides driving those types of redox cascades have not been determined, nor the intracellular H2O2 levels linked to toxicity. Here we elucidate the characteristics, rates, and dynamic ranges of both systems. RESULTS: By comparing the activation of both systems in fission yeast, and applying mathematical equations to the experimental data, we estimate the toxic threshold of intracellular H2O2 able to halt aerobic growth, and the temporal gradients of extracellular to intracellular peroxides. By calculating both the oxidation rates of OxyR and Tpx1 by peroxides, and their reduction rates by the cellular redoxin systems, we propose that, while Tpx1 is a sensor and an efficient H2O2 scavenger because it displays fast oxidation and reduction rates, OxyR is strictly a H2O2 sensor, since its reduction kinetics are significantly slower than its oxidation by peroxides, and therefore, it remains oxidized long enough to execute its transcriptional role. We also show that these two paradigmatic H2O2-sensing models are biologically similar at pre-toxic peroxide levels, but display strikingly different activation behaviors at toxic doses. CONCLUSIONS: Both Tpx1 and OxyR contain thiol switches, with very high reactivity towards peroxides. Nevertheless, the fast reduction of Tpx1 defines it as a scavenger, and this efficient recycling dramatically changes the Tpx1-Pap1 response to H2O2 and connects H2O2 sensing to the redox state of the cell. In contrast, OxyR is a true H2O2 sensor but not a scavenger, being partially insulated from the cellular electron donor capacity.


Assuntos
Peróxido de Hidrogênio/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cisteína/fisiologia , Peróxido de Hidrogênio/toxicidade , Oxirredução , Estresse Oxidativo , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
PLoS Genet ; 13(6): e1006858, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640807

RESUMO

The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.


Assuntos
Transporte de Elétrons/genética , Peroxirredoxinas/genética , Ribonucleotídeo Redutases/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiorredoxinas/genética , Catálise , Quinase do Ponto de Checagem 2/genética , Replicação do DNA/genética , Glutarredoxinas/metabolismo , Oxirredução , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Ribonucleotídeo Redutases/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/metabolismo , Tiorredoxinas/metabolismo
4.
Antioxid Redox Signal ; 26(7): 329-344, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27089838

RESUMO

SIGNIFICANCE: Reactive oxygen species are produced during normal metabolism in cells, and their excesses have been implicated in protein damage and toxicity, as well as in the activation of signaling events. In particular, hydrogen peroxide participates in the regulation of different physiological processes as well as in the induction of antioxidant cascades, and often the redox molecular events triggering these pathways are based on reversible cysteine (Cys) oxidation. Recent Advances: Increases in peroxides can cause the accumulation of reversible Cys oxidations in proteomes, which may be either protecting thiols from irreversible oxidations or may just be reporters of future toxicity. It is also becoming clear, however, that only a few proteins, such as the bacterial OxyR or peroxidases, can suffer direct oxidation of their Cys residues by hydrogen peroxide and, therefore, may be the only true sensors initiating signaling events. CRITICAL ISSUES: We will in this study describe some of the methodologies used to characterize at the proteome level reversible thiol oxidations, specifically those combining gel-free approaches with mass spectrometry. In the second part of this review, we will summarize some of the electrophoretic and proteomic techniques used to monitor Cys oxidation at the protein level, needed to confirm that a protein contains redox Cys involved in signaling relays, using as examples some of the best characterized redox sensors such as bacterial OxyR or yeast Tpx1/Pap1. FUTURE DIRECTIONS: While Cys oxidations are often detected in proteomes and in specific proteins, major efforts have to be made to establish that they are physiologically relevant. Antioxid. Redox Signal. 26, 329-344.


Assuntos
Oxirredução , Proteoma/metabolismo , Proteômica , Compostos de Sulfidrila/metabolismo , Animais , Cisteína/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Espectrometria de Massas , Estresse Oxidativo/efeitos dos fármacos , Proteínas Associadas a Pancreatite , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
Nat Protoc ; 9(5): 1131-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24743420

RESUMO

Reversible thiol oxidation of cysteine residues occurs in many intracellular catalytic and signaling processes. Here we describe an optimized protocol, which can be completed in ∼5 d, to unambiguously identify specific cysteine residues that are transiently and reversibly oxidized by comparing two complex biological samples obtained from yeast cell cultures at the proteome level. After 'freezing' the in vivo thiol stage of cysteine residues by medium acidification, we first block reduced thiols in extracts with iodoacetamide (IAM), and then we sequentially reduce and label reversible oxidized thiols with the biotin-based heavy or light IAM derivatives, which are known as isotope-coded affinity tag (ICAT) reagents, so that the two samples can be compared at once after combination of the labeled extracts, trypsin digestion, streptavidin-affinity purification of peptides containing oxidized cysteines, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. For the same protein extracts, before cysteine-containing peptide enrichment, individual relative protein concentrations are obtained by stable-isotope dimethyl labeling.


Assuntos
Cisteína/metabolismo , Espectrometria de Massas/métodos , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Cromatografia Líquida , Marcação por Isótopo , Oxirredução , Espectrometria de Massas em Tandem , Leveduras
6.
Redox Biol ; 2: 395-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24563858

RESUMO

Cysteine residues, and in particular their thiolate groups, react not only with reactive oxygen species but also with electrophiles and with reactive nitrogen species. Thus, cysteine oxidation has often been linked to the toxic effects of some of these reactive molecules. However, thiol-based switches are common in protein sensors of antioxidant cascades, in both prokaryotic and eukaryotic organisms. We will describe here three redox sensors, the transcription factors OxyR, Yap1 and Pap1, which respond by disulfide bond formation to hydrogen peroxide stress, focusing specially on the differences among the three peroxide-sensing mechanisms.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cistina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutationa Peroxidase/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas Associadas a Pancreatite , Peroxirredoxinas/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/metabolismo
7.
Mol Microbiol ; 92(2): 246-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24521463

RESUMO

The main peroxiredoxin in Schizosaccharomyces pombe, Tpx1, is important to sustain aerobic growth, and cells lacking this protein are only able to grow on solid plates under anaerobic conditions. We have found that deletion of the gene coding for thioredoxin reductase, trr1, is a suppressor of the sensitivity to aerobic growth of Δtpx1 cells, so that cells lacking both proteins are able to grow on solid plates in the presence of oxygen. We have investigated this suppression effect, and determined that it depends on the presence of catalase, which is constitutively expressed in Δtrr1 cells in a transcription factor Pap1-dependent manner. A complete characterization of the repertoire of hydrogen peroxide scavenging activities in fission yeast suggests that Tpx1 is the only enzyme with sufficient sensitivity for peroxides and cellular abundance as to control the low levels produced during aerobic growth, catalase being the next barrier of detoxification when the steady-state levels of peroxides are increased in Δtpx1 cells. Gpx1, the only glutathione peroxidase encoded by the S. pombe genome, only has a minor secondary role when extracellular peroxides are added. Our study proposes non-overlapping roles for the different hydrogen peroxide scavenging activities of this eukaryotic organism.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Aerobiose , Anaerobiose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Oxigênio/metabolismo , Proteínas Associadas a Pancreatite , Peroxirredoxinas/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiorredoxina Dissulfeto Redutase/genética
8.
Cell Rep ; 5(5): 1413-24, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24316080

RESUMO

In fission yeast, the transcription factor Pap1 undergoes H2O2-dependent oxidation that promotes its nuclear accumulation and the activation of an antioxidant gene program. However, the mechanisms that regulate the sensitivity and selectivity of Pap1 activation by peroxides are not fully understood. Here, we demonstrate that the peroxiredoxin Tpx1, the sensor of this signaling cascade, activates the otherwise unresponsive Pap1 protein once the main cytosolic reduced thioredoxin, Trx1, becomes transiently depleted. In other words, Pap1 works as an alternative electron donor for oxidized Tpx1. We have trapped the very transient Tpx1-Pap1 intermediate in cells depleted in Trx1, as we show here using mass spectrometry. Recycling of Tpx1 by Trx1 is required for the efficient signaling to Pap1, suggesting that the complete cycle of H2O2 scavenging by Tpx1 and further recycling of oxidized Tpx1 by Trx1 is required for full downstream activation of the redox cascade.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Peróxido de Hidrogênio/farmacologia , Peroxirredoxinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Oxirredução , Proteínas Associadas a Pancreatite , Peroxirredoxinas/genética , Ligação Proteica , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...