Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38350793

RESUMO

INTRODUCTION: Abdominal aortic aneurysm (AAA) constitutes a pathology with high mortality. There is currently no screening program implemented in primary care in Spain. OBJECTIVES: To evaluate the usefulness of ultrasound in the detection of AAA in the at-risk population in primary care. Secondarily, to identify subjects whose vascular risk (VR) should be reclassified and to determine whether AAA is associated with the presence of carotid plaque and other risk factors. MATERIAL AND METHODS: Cross-sectional, descriptive, multicenter, national, descriptive study in primary care. SUBJECTS: A consecutive selection of hypertensive males aged between 65 and 75 who are either smokers or former smokers, or individuals over the age of 50 of both sexes with a family history of AAA. MEASUREMENTS: Diameter of abdominal aorta and iliac arteries; detection of abdominal aortic and carotid atherosclerotic plaque. VR was calculated at the beginning and after testing (SCORE). RESULTS: One hundred and fifty patients were analyzed (age: 68.3±5 years; 89.3% male). Baseline RV was high/very high in 55.3%. AAA was detected in 12 patients (8%; 95% CI: 4-12); aortic ectasia in 13 (8.7%); abdominal aortic plaque in 44% and carotid plaque in 62% of the participants. VR was reclassified in 50% of subjects. The detection of AAA or ectasia was associated with the presence of carotid plaque, current smoking and lipoprotein(a), p<0.01. CONCLUSIONS: The prevalence of AAA in patients with VR is high. Ultrasound in primary care allows detection of AAA and subclinical atherosclerosis and consequently reclassification of the VR, demonstrating its utility in screening for AAA in the at-risk population.

2.
J Neuropathol Exp Neurol ; 74(7): 653-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26079447

RESUMO

Fetal-onset hydrocephalus affects 1 to 3 per 1,000 live births. It is not only a disorder of cerebrospinal fluid dynamics but also a brain disorder that corrective surgery does not ameliorate. We hypothesized that cell junction abnormalities of neural stem cells (NSCs) lead to the inseparable phenomena of fetal-onset hydrocephalus and abnormal neurogenesis. We used bromodeoxyuridine labeling, immunocytochemistry, electron microscopy, and cell culture to study the telencephalon of hydrocephalic HTx rats and correlated our findings with those in human hydrocephalic and nonhydrocephalic human fetal brains (n = 12 each). Our results suggest that abnormal expression of the intercellular junction proteins N-cadherin and connexin-43 in NSC leads to 1) disruption of the ventricular and subventricular zones, loss of NSCs and neural progenitor cells; and 2) abnormalities in neurogenesis such as periventricular heterotopias and abnormal neuroblast migration. In HTx rats, the disrupted NSC and progenitor cells are shed into the cerebrospinal fluid and can be grown into neurospheres that display intercellular junction abnormalities similar to those of NSC of the disrupted ventricular zone; nevertheless, they maintain their potential for differentiating into neurons and glia. These NSCs can be used to investigate cellular and molecular mechanisms underlying this condition, thereby opening the avenue for stem cell therapy.


Assuntos
Hidrocefalia/patologia , Junções Intercelulares/patologia , Células-Tronco Neurais/patologia , Neurogênese/fisiologia , Obstrução do Fluxo Ventricular Externo/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Diferenciação Celular , Movimento Celular , Células Cultivadas , Embrião de Mamíferos , Feminino , Feto , Idade Gestacional , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Junções Intercelulares/ultraestrutura , Masculino , Microscopia Eletrônica , Células-Tronco Neurais/ultraestrutura , Ratos , Telencéfalo/embriologia , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/patologia , Telencéfalo/ultraestrutura
3.
Tissue Barriers ; 2: e28426, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045600

RESUMO

The neuroepithelium is a germinal epithelium containing progenitor cells that produce almost all of the central nervous system cells, including the ependyma. The neuroepithelium and ependyma constitute barriers containing polarized cells covering the embryonic or mature brain ventricles, respectively; therefore, they separate the cerebrospinal fluid that fills cavities from the developing or mature brain parenchyma. As barriers, the neuroepithelium and ependyma play key roles in the central nervous system development processes and physiology. These roles depend on mechanisms related to cell polarity, sensory primary cilia, motile cilia, tight junctions, adherens junctions and gap junctions, machinery for endocytosis and molecule secretion, and water channels. Here, the role of both barriers related to the development of diseases, such as neural tube defects, ciliary dyskinesia, and hydrocephalus, is reviewed.

4.
Neuropathol Appl Neurobiol ; 40(7): 911-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24707814

RESUMO

AIMS: Here, we tested the hypothesis that glial responses via the production of cytokines such as transforming growth factor-beta 1 (TGFß1) and tumour necrosis factor alpha (TNFα), which play important roles in neurodegenerative diseases, are correlated with the severity of congenital hydrocephalus in the hyh mouse model. We also searched for evidence of this association in human cases of primary hydrocephalus. METHODS: Hyh mice, which exhibit either severe or compensated long-lasting forms of hydrocephalus, were examined and compared with wild-type mice. TGFß1, TNFα and TNFαR1 mRNA levels were quantified using real-time PCR. TNFα and TNFαR1 were immunolocalized in the brain tissues of hyh mice and four hydrocephalic human foetuses relative to astroglial and microglial reactions. RESULTS: The TGFß1 mRNA levels were not significantly different between hyh mice exhibiting severe or compensated hydrocephalus and normal mice. In contrast, severely hydrocephalic mice exhibited four- and two-fold increases in the mean levels of TNFα and TNFαR1, respectively, compared with normal mice. In the hyh mouse, TNFα and TNFαR1 immunoreactivity was preferentially detected in astrocytes that form a particular periventricular reaction characteristic of hydrocephalus. However, these proteins were rarely detected in microglia, which did not appear to be activated. TNFα immunoreactivity was also detected in the glial reaction in the small group of human foetuses exhibiting hydrocephalus that were examined. CONCLUSIONS: In the hyh mouse model of congenital hydrocephalus, TNFα and TNFαR1 appear to be associated with the severity of the disease, probably mediating the astrocyte reaction, neurodegenerative processes and ischaemia.


Assuntos
Encéfalo/metabolismo , Hidrocefalia/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feto , Humanos , Hidrocefalia/patologia , Masculino , Camundongos , Microglia/metabolismo , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença
5.
Acta Neuropathol ; 124(4): 531-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22576081

RESUMO

Hydrocephalic hyh mutant mice undergo a programmed loss of the neuroepithelium/ependyma followed by a reaction of periventricular astrocytes, which form a new cell layer covering the denuded ventricular surface. We present a comparative morphological and functional study of the newly formed layer of astrocytes and the multiciliated ependyma of hyh mice. Transmission electron microscopy, immunocytochemistry for junction proteins (N-cadherin, connexin 43) and proteins involved in permeability (aquaporin 4) and endocytosis (caveolin-1, EEA1) were used. Horseradish peroxidase (HRP) and lanthanum nitrate were used to trace the intracellular and paracellular transport routes. The astrocyte layer shares several cytological features with the normal multiciliated ependyma, such as numerous microvilli projected into the ventricle, extensive cell-cell interdigitations and connexin 43-based gap junctions, suggesting that these astrocytes are coupled to play an unknown function as a cell layer. The ependyma and the astrocyte layers also share transport properties: (1) high expression of aquaporin 4, caveolin-1 and the endosome marker EEA1; (2) internalization into endocytic vesicles and early endosomes of HRP injected into the ventricle; (3) and a similar paracellular route of molecules moving between CSF, the subependymal neuropile and the pericapillary space, as shown by lanthanum nitrate and HRP. A parallel analysis performed in human hydrocephalic foetuses indicated that a similar phenomenon would occur in humans. We suggest that in foetal-onset hydrocephalus, the astrocyte assembly at the denuded ventricular walls functions as a CSF-brain barrier involved in water and solute transport, thus contributing to re-establish lost functions at the brain parenchyma-CSF interphase.


Assuntos
Astrócitos/ultraestrutura , Epêndima/ultraestrutura , Hidrocefalia/patologia , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Epêndima/metabolismo , Feto , Imunofluorescência , Humanos , Hidrocefalia/congênito , Hidrocefalia/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
6.
J Neuropathol Exp Neurol ; 64(7): 595-604, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16042311

RESUMO

In mutant rodents, ependymal denudation occurs early in fetal life, preceding the onset of a communicating hydrocephalus, and is a key event in the etiology of this disease. The present investigation was designed to obtain evidence whether or not ependymal denudation occurs in 16- to 40-week-old human fetuses developing a communicating hydrocephalus (n = 8) as compared to fetuses of similar ages with no neuropathologic alterations (n = 15). Sections through the walls of the cerebral aqueduct and lateral ventricles were processed for lectin binding and immunocytochemistry using antibodies against ependyma, astroglia, neuroblasts, and macrophages markers. Anticaveolin was used as a functional marker of the fetal ependyma. The structural and functional molecular markers are differentially expressed throughout the differentiation of the human fetal ependyma. Denudation of the ependyma of the aqueduct and lateral ventricles occurred in all fetuses developing a communicating hydrocephalus, including the youngest ones studied. The denuded surface area increased in parallel with the fetus age. The possibility is advanced that in many or most cases of human fetal hydrocephalus there is a common defect at the ependymal cell lineage leading to ependymal detachment. Evidence was obtained that in hydrocephalic human fetuses a process to repair the denuded areas takes place during the fetal life. In hydrocephalic fetuses, detachment of the ependyma of the lateral ventricles resulted in the (i) loss of the germinal ependymal zone, (ii) disorganization of the subventricular zone and, (iii) abnormal migration of neuroblasts into the ventricular cavity. Thus, detachment of the ependymal layer in hydrocephalic fetuses would not only be associated with the pathogenesis of hydrocephalus but also to abnormal neurogenesis.


Assuntos
Aqueduto do Mesencéfalo/patologia , Epêndima/patologia , Hidrocefalia/patologia , Ventrículos Laterais/patologia , Aqueduto do Mesencéfalo/metabolismo , Epêndima/embriologia , Epêndima/metabolismo , Feminino , Doenças Fetais/metabolismo , Doenças Fetais/patologia , Feto , Humanos , Hidrocefalia/metabolismo , Imuno-Histoquímica , Ventrículos Laterais/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...