Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(23): 8747-8760, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37247425

RESUMO

The cellular level of reactive oxygen species (ROS) has to be controlled to avoid some pathologies, especially those linked to oxidative stress. One strategy for designing antioxidants consists of modeling natural enzymes involved in ROS degradation. Among them, nickel superoxide dismutase (NiSOD) catalyzes the dismutation of the superoxide radical anion, O2•-, into O2 and H2O2. We report here Ni complexes with tripeptides derived from the amino-terminal CuII- and NiII-binding (ATCUN) motif that mimics some structural features found in the active site of the NiSOD. A series of six mononuclear NiII complexes were investigated in water at physiological pH with different first coordination spheres, from compounds with a N3S to N2S2 set, and also complexes that are in equilibrium between the N-coordination (N3S) and S-coordination (N2S2). They were fully characterized by a combination of spectroscopic techniques, including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations and their redox properties studied by cyclic voltammetry. They all display SOD-like activity, with a kcat ranging between 0.5 and 2.0 × 106 M-1 s-1. The complexes in which the two coordination modes are in equilibrium are the most efficient, suggesting a beneficial effect of a nearby proton relay.


Assuntos
Peróxido de Hidrogênio , Superóxido Dismutase , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/química , Superóxido Dismutase/química , Oxirredução , Superóxidos/química , Níquel/química
2.
J Org Chem ; 87(16): 11172-11184, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35946789

RESUMO

The combination of NiIIX2 salts with a bipyridine-type ligand and aromatic carbonyl-based chromophores has emerged as a benchmark precatalytic system to efficiently conduct cross-couplings mediated by light. Mechanistic studies have led to two scenarios in which Ni0 is proposed as the catalytic species. Nonetheless, in none of these studies has a NiII to Ni0 photoreduction been evidenced. By exploiting UV-visible, nuclear magnetic resonance, resonance Raman, electron paramagnetic resonance, and dynamic light scattering spectroscopies and also transmission electron microscopy, we report that, when photolyzed by UVA in alcohols, the structurally defined [NiII2(µ-OH2)(dtbbpy)2(BPCO2)4] complex 1 integrating a benzophenone chromophore is reduced into a diamagnetic NiI dimer of the general formula [NiI2(dtbbpy)2(BPCO2)2]. In marked contrast, in THF, photolysis led to the fast formation of Ni0, which accumulates in the form of metallic ultrathin Ni nanosheets characterized by a mean size of ∼100 nm and a surface plasmon resonance at 505 nm. Finally, it is shown that 1 combined with UVA irradiation catalyzes cross-couplings, that is, C(sp3)-H arylation of THF and O-arylation of methanol. These results are discussed in light of the mechanisms proposed for these cross-couplings with a focus on the oxidation state of the catalytic species.

3.
Inorg Chem ; 60(17): 12772-12780, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34416109

RESUMO

Nickel superoxide dismutase (NiSOD) is an enzyme that protects cells against O2·-. While the structure of its active site is known, the mechanism of the catalytic cycle is still not elucidated. Its active site displays a square planar NiII center with two thiolates, the terminal amine and an amidate. We report here a bioinspired NiII complex built on an ATCUN-like binding motif modulated with one cysteine, which demonstrates catalytic SOD activity in water (kcat = 8.4(2) × 105 M-1 s-1 at pH = 8.1). Its reactivity with O2·- was also studied in acetonitrile allowing trapping two different short-lived species that were characterized by electron paramagnetic resonance or spectroelectrochemistry and a combination of density functional theory (DFT) and time-dependent DFT calculations. Based on these observations, we propose that O2·- interacts first with the complex outer sphere through a H-bond with the peptide scaffold in a [NiIIO2·-] species. This first species could then evolve into a NiIII hydroperoxo inner sphere species through a reaction driven by protonation that is thermodynamically highly favored according to DFT calculations.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Superóxidos/química , Catálise , Teoria da Densidade Funcional , Modelos Químicos , Estrutura Molecular , Níquel/química , Superóxido Dismutase/química
4.
AMB Express ; 9(1): 175, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673806

RESUMO

Flavin-dependent halogenases (FHals) catalyse the halogenation of electron-rich substrates, mainly aromatics. Halogenated compounds have many applications, as pharmaceutical, agrochemicals or as starting materials for the synthesis of complex molecules. By exploring the sequenced bacterial diversity, we discovered and characterized XszenFHal, a novel FHal from Xenorhabdus szentirmaii, a symbiotic bacterium of entomopathogenic nematode. The substrate scope of XszenFHal was examined and revealed activities towards tryptophan, indole and indole derivatives, leading to the formation of the corresponding 5-chloro products. XszenFHal makes a valuable addition to the panel of flavin-dependent halogenases already discovered and enriches the potential for biotechnology applications by allowing access to 5-halogenated indole derivatives.

5.
Inorg Chem ; 58(19): 12775-12785, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31545024

RESUMO

The superoxide dismutase (SOD) activity of mononuclear NiII complexes, whose structures are inspired by the NiSOD, has been investigated. They have been designed with a sulfur-rich pseudopeptide ligand, derived from nitrilotriacetic acid (NTA), where the three acid functions are grafted with cysteines (L3S). Two mononuclear complexes, which exist in pH-dependent proportions, have been fully characterized by a combination of spectroscopic techniques including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations. They display similar square-planar S3O coordination, with the three thiolates of the three cysteine moieties from L3S coordinated to the NiII ion, together with either a water molecule at physiological pH, as [NiL3S(OH2)]-, or a hydroxo ion in more basic conditions, as [NiL3S(OH)]2-. The 1H NMR study has revealed that contrary to the hydroxo ligand, the bound water molecule is labile. The cyclic voltammogram of both complexes displays an irreversible one-electron oxidation process assigned to the NiII/NiIII redox system with Epa = 0.48 and 0.31 V versus SCE for NiL3S(OH2) and NiL3S(OH), respectively. The SOD activity of both complexes has been tested. On the basis of the xanthine oxidase assay, an IC50 of about 1 µM has been measured at pH 7.4, where NiL3S(OH2) is mainly present (93% of the NiII species), while the IC50 is larger than 100 µM at pH 9.6, where NiL3S(OH) is the major species (92% of the NiII species). Interestingly, only NiL3S(OH2) displays SOD activity, suggesting that the presence of a labile ligand is required. The SOD activity has been also evaluated under catalytic conditions at pH 7.75, where the ratio between NiL3S(OH2)/ NiL3S(OH) is about (86:14), and a rate constant, kcat = 1.8 × 105 M-1 s-1, has been measured. NiL3S(OH2) is thus the first low-molecular weight, synthetic, bioinspired Ni complex that displays catalytic SOD activity in water at physiological pH, although it does not contain any N-donor ligand in its first coordination sphere, as in the NiSOD. Overall, the data show that a key structural feature is the presence of a labile ligand in the coordination sphere of the NiII ion.


Assuntos
Complexos de Coordenação/química , Cisteína/química , Níquel/química , Compostos de Enxofre/química , Superóxido Dismutase/química , Materiais Biomiméticos/química , Concentração de Íons de Hidrogênio , Ligantes , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...