Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertens Res ; 44(8): 932-940, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33707760

RESUMO

Baroreflex activation by electric stimulation of the carotid sinus (CS) effectively lowers blood pressure. However, the degree to which differences between stimulation protocols impinge on cardiovascular outcomes has not been defined. To address this, we examined the effects of short- and long-duration (SD and LD) CS stimulation on hemodynamic and vascular function in spontaneously hypertensive rats (SHRs). We fit animals with miniature electrical stimulators coupled to electrodes positioned around the left CS nerve that delivered intermittent 5/25 s ON/OFF (SD) or 20/20 s ON/OFF (LD) square pulses (1 ms, 3 V, 30 Hz) continuously applied for 48 h in conscious animals. A sham-operated control group was also studied. We measured mean arterial pressure (MAP), systolic blood pressure variability (SBPV), heart rate (HR), and heart rate variability (HRV) for 60 min before stimulation, 24 h into the protocol, and 60 min after stimulation had stopped. SD stimulation reversibly lowered MAP and HR during stimulation. LD stimulation evoked a decrease in MAP that was sustained even after stimulation was stopped. Neither SD nor LD had any effect on SBPV or HRV when recorded after stimulation, indicating no adaptation in autonomic activity. Both the contractile response to phenylephrine and the relaxation response to acetylcholine were increased in mesenteric resistance vessels isolated from LD-stimulated rats only. In conclusion, the ability of baroreflex activation to modulate hemodynamics and induce lasting vascular adaptation is critically dependent on the electrical parameters and duration of CS stimulation.


Assuntos
Barorreflexo , Hipertensão , Animais , Pressão Sanguínea , Seio Carotídeo , Estimulação Elétrica , Frequência Cardíaca , Hipertensão/terapia , Ratos , Ratos Endogâmicos SHR
2.
Exp Neurol ; 335: 113517, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33132201

RESUMO

Chronic intermittent hypoxia (CIH) is a model for obstructive sleep apnea. The paraventricular nucleus (PVN) of the hypothalamus has been suggested to contribute to CIH-induced exaggerated cardiorespiratory reflexes, sympathoexcitation and hypertension. This may occur, in part, via activation of the dense catecholaminergic projections to the PVN that originate in the brainstem. However, the contribution of norepinephrine (NE) and activation of its alpha-adrenergic receptors (α-ARs) in the PVN after CIH exposure is unknown. We hypothesized CIH would increase the contribution of catecholaminergic input. To test this notion, we determined the expression of α-AR subtypes, catecholamine terminal density, and synaptic properties of PVN parvocellular neurons in response to α-AR activation in male Sprague-Dawley normoxic (Norm) and CIH exposed rats. CIH decreased mRNA for α1d and α2b AR. Dopamine-ß-hydroxylase (DßH) terminals in the PVN were similar between groups. NE and the α1-AR agonist phenylephrine (PE) increased sEPSC frequency after Norm but not CIH. Block of α1-ARs with prazosin alone did not alter sEPSCs after either Norm or CIH but did prevent agonist augmentation of sEPSC frequency following normoxia. These responses to NE were mimicked by PE during action potential block suggesting presynaptic terminal alterations in CIH. Altogether, these results demonstrate that α1-AR activation participates in neuronal responses in Norm, but are attenuated after CIH. These results may provide insight into the cardiovascular, respiratory and autonomic nervous systems alterations in obstructive sleep apnea.


Assuntos
Hipóxia/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Receptores Adrenérgicos alfa , Síndromes da Apneia do Sono/fisiopatologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Catecolaminas/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Neurônios , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sinapses/metabolismo
3.
Hypertens Res ; 43(10): 1057-1067, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32358534

RESUMO

We evaluated the effects of long-term (48 h) electrical stimulation of the carotid sinus (CS) in hypertensive rats. L-NAME-treated (10 days) Wistar rats were implanted with a catheter in the femoral artery and a miniaturized electrical stimulator attached to electrodes positioned around the left CS, encompassing the CS nerve. One day after implantation, arterial pressure (AP) was directly recorded in conscious animals for 60 min. Square pulses (1 ms, 3 V, 30 Hz) were applied intermittently (20/20 s ON/OFF) to the CS for 48 h. After the end of stimulation, AP was recorded again. Nonstimulated rats (control group) and rats without electrodes around the CS (sham-operated) were also studied. Next, the animals were decapitated, and segments of mesenteric resistance arteries were removed to study vascular function. After the stimulation period, AP was 16 ± 5 mmHg lower in the stimulated group, whereas sham-operated and control rats showed similar AP between the first and second recording periods. Heart rate variability (HRV) evaluated using time and frequency domain tools and a nonlinear approach (symbolic analysis) suggested that hypertensive rats with electrodes around the CS, stimulated or not, exhibited a shift in cardiac sympathovagal balance towards parasympathetic tone. The relaxation response to acetylcholine in endothelium-intact mesenteric arteries was enhanced in rats that underwent CS stimulation for 48 h. In conclusion, long-term CS stimulation is effective in reducing AP levels, improving HRV and increasing mesenteric vascular relaxation in L-NAME hypertensive rats. Moreover, only the presence of electrodes around the CS is effective in eliciting changes in HRV similar to those observed in stimulated rats.


Assuntos
Barorreflexo , Terapia por Estimulação Elétrica/métodos , Hipertensão/terapia , Animais , Pressão Arterial , Modelos Animais de Doenças , Frequência Cardíaca , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Técnicas In Vitro , Masculino , Artérias Mesentéricas/enzimologia , NG-Nitroarginina Metil Éster , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Wistar
4.
Sci Rep ; 7(1): 6265, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740186

RESUMO

Recent studies demonstrated a critical functional connection between the autonomic (sympathetic and parasympathetic) nervous and the immune systems. The carotid sinus nerve (CSN) conveys electrical signals from the chemoreceptors of the carotid bifurcation to the central nervous system where the stimuli are processed to activate sympathetic and parasympathetic efferent signals. Here, we reported that chemoreflex activation via electrical CSN stimulation, in conscious rats, controls the innate immune response to lipopolysaccharide attenuating the plasma levels of inflammatory cytokines such as tumor necrosis factor (TNF), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6). By contrast, the chemoreflex stimulation increases the plasma levels of anti-inflammatory cytokine interleukin 10 (IL-10). This chemoreflex anti-inflammatory network was abrogated by carotid chemoreceptor denervation and by pharmacological blockade of either sympathetic - propranolol - or parasympathetic - methylatropine - signals. The chemoreflex stimulation as well as the surgical and pharmacological procedures were confirmed by real-time recording of hemodynamic parameters [pulsatile arterial pressure (PAP) and heart rate (HR)]. These results reveal, in conscious animals, a novel mechanism of neuromodulation mediated by the carotid chemoreceptors and involving both the sympathetic and parasympathetic systems.


Assuntos
Seio Carotídeo/fisiologia , Células Quimiorreceptoras/metabolismo , Estado de Consciência/fisiologia , Terapia por Estimulação Elétrica , Imunidade Inata/imunologia , Inflamação/prevenção & controle , Animais , Citocinas/metabolismo , Inflamação/imunologia , Inflamação/patologia , Masculino , Ratos , Ratos Wistar , Sistema Nervoso Simpático
5.
J Chem Neuroanat ; 74: 47-54, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26970564

RESUMO

The activation of GABAergic receptors, GABAA and GABAB, in the lateral parabrachial nucleus (LPBN) increases water and sodium intake in satiated and fluid-depleted rats. The present study investigated the presence of the GABAC receptor in the LPBN, its involvement in water and sodium intake, and its effects on cardiovascular parameters during the acute fluid depletion induced by furosemide combined with captopril (Furo/Cap). One group of male Wistar rats (290-300g) with bilateral stainless steel LPBN cannulas was used to test the effects of a GABAC receptor agonist and antagonist on the fluid intake and cardiovascular parameters. We investigated the effects of bilateral LPBN injections of trans-4-aminocrotonic acid (TACA) on the intake of water and 0.3M NaCl induced by acute fluid depletion (subcutaneous injection of Furo/Cap). c-Fos expression increased (P<0.05), suggesting LPBN neuronal activation. The injection of different doses of TACA (0.5, 2.0 and 160 nmol) in the LPBN did not change the sodium or water intake in Furo/Cap-treated rats (P>0.05). Treatment with the GABAC receptor antagonist (Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid sulfate (ZAPA, 10nmol) or with ZAPA (10nmol) plus TACA (160nmol) did not change the sodium or water intake compared with that for vehicle (saline) (P>0.05). Bilateral injections of the GABAC agonist in the LPBN of Furo/Cap-treated rats did not affect the mean arterial pressure (MAP) or heart rate (HR). The GABAC receptor expression in the LPBN was confirmed by the presence of a 50kDa band. Although LPBN neurons might express GABAC receptors, their activation produced no change in water and sodium intake or in the cardiovascular parameters in the acute fluid depletion rats. Therefore, the GABAC receptors in the LPBN might not interfere with fluid and blood pressure regulation.


Assuntos
Ingestão de Líquidos/fisiologia , Núcleos Parabraquiais/metabolismo , Receptores de GABA/metabolismo , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA