Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(12): 2564-2576, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37177783

RESUMO

Could the phenomenon of catch bonding-force-strengthened cellular adhesion-play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here, we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant microscale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific antiadhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example, leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation.


Assuntos
Anemia Falciforme , Laminina , Humanos , Laminina/metabolismo , Eritrócitos , Adesão Celular , Eritrócitos Anormais
2.
Anal Bioanal Chem ; 413(29): 7147-7156, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34235570

RESUMO

When studying viruses, the most prevalent aspects that come to mind are their structural and functional features, but this leaves in the shadows a quite universal characteristic: their mass. Even if approximations can be derived from size and density measurements, the multi MDa to GDa mass range, featuring a majority of viruses, has so far remained largely unexplored. Recently, nano-electromechanical resonator-based mass spectrometry (NEMS-MS) has demonstrated the ability to measure the mass of intact DNA filled viral capsids in excess of 100 MDa. However, multiple factors have to be taken in consideration when performing NEMS-MS measurements. In this article, phenomena influencing NEMS-MS mass estimates are listed and discussed, including some particle's extraneous physical properties (size, aspect ratio, stiffness), and the influence of frequency noise and device fabrication defects. These factors being accounted for, we could begin to notice subtler effects linked with (e.g.) particle desolvation as a function of operating parameters. Graphical abstract.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Nanoestruturas/química , Vírion/química , Calibragem , Capsídeo/química , Desenho de Equipamento , Fagos T/química
3.
Langmuir ; 36(43): 13041-13050, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33103438

RESUMO

Micrometer scale colloidal particles experiencing ∼kT scale interactions and suspended in a fluid are relevant to a broad spectrum of applications. Often, colloidal particles are anisotropic, either by design or by nature. Yet, there are few techniques by which ∼kT scale interactions of anisotropic particles can be measured. Herein, we present the initial development of scattering morphology resolved total internal reflection microscopy (SMR-TIRM). The hypothesis of this work is that the morphology of light scattered by an anisotropic particle from an evanescent wave is a sensitive function of particle orientation. This hypothesis was tested with experiments and simulations mapping the scattered light from colloidal ellipsoids at systemically varied orientations. Scattering morphologies were first fitted with a two-dimensional (2D) Gaussian surface. The fitted morphology was parameterized by the morphology's orientation angle Mϕ and aspect ratio MAR. Data from both experiments and simulations show Mϕ to be a function of the particle azimuthal angle, while MAR was a sensitive function of the polar angle. This analysis shows that both azimuthal and polar angles of a colloidal ellipsoid could be resolved from scattering morphology as well or better than using bright-field microscopy. The integrated scattering intensity, which will be used for determining the separation distance, was also found to be a sensitive function of particle orientation. A procedure for interpreting these confounding effects was developed that in principle would uniquely determine the separation distance, the azimuthal angle, and the polar angle. Tracking these three quantities is necessary for calculating the potential energy landscape sampled by a colloidal ellipsoid.

4.
Science ; 362(6417): 918-922, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30467165

RESUMO

Measurement of the mass of particles in the mega- to gigadalton range is challenging with conventional mass spectrometry. Although this mass range appears optimal for nanomechanical resonators, nanomechanical mass spectrometers often suffer from prohibitive sample loss, extended analysis time, or inadequate resolution. We report on a system architecture combining nebulization of the analytes from solution, their efficient transfer and focusing without relying on electromagnetic fields, and the mass measurements of individual particles using nanomechanical resonator arrays. This system determined the mass distribution of ~30-megadalton polystyrene nanoparticles with high detection efficiency and effectively performed molecular mass measurements of empty or DNA-filled bacteriophage T5 capsids with masses up to 105 megadaltons using less than 1 picomole of sample and with an instrument resolution above 100.


Assuntos
Capsídeo/química , Capsídeo/ultraestrutura , Espectrometria de Massas/métodos , Nanotecnologia/métodos , DNA Viral/química , Campos Eletromagnéticos , Nanopartículas/química , Poliestirenos/química , Fagos T/química , Fagos T/ultraestrutura
5.
Annu Rev Phys Chem ; 67: 489-514, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27215820

RESUMO

Fluctuation correlation spectroscopy (FCS) is a well-established analytical technique traditionally used to monitor molecular diffusion in dilute solutions, the dynamics of chemical reactions, and molecular processes inside living cells. In this review, we present the recent use of FCS for measuring the size of colloidal nanoparticles in solution. We review the theoretical basis and experimental implementation of this technique and its advantages and limitations. In particular, we show examples of the use of FCS to measure the size of gold nanoparticles, monitor the rotational dynamics of gold nanorods, and investigate the formation of protein coronas on nanoparticles.

6.
ACS Nano ; 10(2): 2103-12, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26751094

RESUMO

The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Desdobramento de Proteína , Adsorção , Humanos , Células MCF-7
7.
ACS Nano ; 9(7): 7072-9, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26165983

RESUMO

Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule. We observe emission from coupled plasmonic modes as revealed by single-particle photoluminescence spectra in comparison to correlated dark-field scattering spectroscopy. The photoluminescence quantum yield of the dimers is found to be surprisingly similar to the constituent monomers, suggesting that the increased local electric field of the dimer plays a minor role, in contradiction to several proposed mechanisms. Aided by electromagnetic simulations of scattering and absorption spectra, we conclude that our data are instead consistent with a multistep mechanism that involves the emission due to radiative decay of surface plasmons generated from excited electron-hole pairs following interband absorption.

8.
Nat Mater ; 14(1): 66-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25401922

RESUMO

The high optical and chemical activity of nanoparticles (NPs) signifies the possibility of converting the spin angular momenta of photons into structural changes in matter. Here, we demonstrate that illumination of dispersions of racemic CdTe NPs with right- (left-)handed circularly polarized light (CPL) induces the formation of right- (left-)handed twisted nanoribbons with an enantiomeric excess exceeding 30%, which is ∼10 times higher than that of typical CPL-induced reactions. Linearly polarized light or dark conditions led instead to straight nanoribbons. CPL 'templating' of NP assemblies is based on the enantio-selective photoactivation of chiral NPs and clusters, followed by their photooxidation and self-assembly into nanoribbons with specific helicity as a result of chirality-sensitive interactions between the NPs. The ability of NPs to retain the polarization information of incident photons should open pathways for the synthesis of chiral photonic materials and allow a better understanding of the origins of biomolecular homochirality.


Assuntos
Nanoestruturas/química , Processos Fotoquímicos , Fótons , Estereoisomerismo
9.
Chem Soc Rev ; 44(1): 40-57, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24979351

RESUMO

This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles.


Assuntos
Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície , Microscopia de Força Atômica , Microscopia Eletrônica , Modelos Teóricos , Imagem Óptica
10.
Nanoscale ; 6(19): 11451-61, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25155111

RESUMO

Plasmonic polymers are quasi one-dimensional assemblies of nanoparticles whose optical responses are governed by near-field coupling of localized surface plasmons. Through single particle extinction spectroscopy correlated with electron microscopy, we reveal the effect of the composition of the repeat unit, the chain length, and extent of disorder on the energies, intensities, and line shapes of the collective resonances of individual plasmonic polymers constructed from three different sizes of gold nanoparticles. Our combined experimental and theoretical analysis focuses on the superradiant plasmon mode, which results from the most attractive interactions along the nanoparticle chain and yields the lowest energy resonance in the spectrum. This superradiant mode redshifts with increasing chain length until an infinite chain limit, where additional increases in chain length cause negligible change in the energy of the superradiant mode. We find that, among plasmonic polymers of equal width comprising nanoparticles with different sizes, the onset of the infinite chain limit and its associated energy are dictated by the number of repeat units and not the overall length of the polymer. The intensities and linewidths of the superradiant mode relative to higher energy resonances, however, differ as the size and number of nanoparticles are varied in the plasmonic polymers studied here. These findings provide general guidelines for engineering the energies, intensities, and line shapes of the collective optical response of plasmonic polymers constructed from nanoparticles with sizes ranging from a few tens to one hundred nanometers.

11.
J Chromatogr A ; 1343: 135-42, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24751557

RESUMO

The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins.


Assuntos
Cromatografia por Troca Iônica/métodos , Proteínas/química , Adsorção , Dicroísmo Circular , Cinética , Lactalbumina , Ligantes , Concentração Osmolar , Sefarose/química
12.
ACS Sustain Chem Eng ; 1(7): 833-842, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23914342

RESUMO

We find that citrate-stabilized gold nanoparticles aggregate and precipitate in saline solutions below the NaCl concentration of many bodily fluids and blood plasma. Our experiments indicate that this is due to complexation of the citrate anions with Na+ cations in solution. A dramatically enhanced colloidal stability is achieved when bovine serum albumin is adsorbed to the gold nanoparticle surface, completely preventing nanoparticle aggregation under harsh environmental conditions where the NaCl concentration is well beyond the isotonic point. Furthermore, we explore the mechanism of the formation of this albumin 'corona' and find that monolayer protein adsorption is most likely ruled by hydrophobic interactions. As for many nanotechnology-based biomedical and environmental applications, particle aggregation and sedimentation are undesirable and could substantially increase the risk of toxicological side-effects, the formation of the BSA corona presented here provides a low-cost bio-compatible strategy for nanoparticle stabilization and transport in highly ionic environments.

13.
ACS Nano ; 6(8): 7177-84, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22830934

RESUMO

We report on the one-photon photoluminescence of gold nanorods with different aspect ratios. We measured photoluminescence and scattering spectra from 82 gold nanorods using single-particle spectroscopy. We found that the emission and scattering spectra closely resemble each other independent of the nanorod aspect ratio. We assign the photoluminescence to the radiative decay of the longitudinal surface plasmon generated after fast interconversion from excited electron-hole pairs that were initially created by 532 nm excitation. The emission intensity was converted to the quantum yield and was found to approximately exponentially decrease as the energy difference between the excitation and emission wavelength increased for gold nanorods with plasmon resonances between 600 and 800 nm. We compare this plasmon emission to its molecular analogue, fluorescence.


Assuntos
Ouro/química , Medições Luminescentes , Nanotubos/química , Nanotubos/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Propriedades de Superfície
14.
Acc Chem Res ; 45(11): 1936-45, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22512668

RESUMO

A surface plasmon is the coherent oscillation of the conduction band electrons. When a metal nanoparticle is excited to produce surface plasmons, incident light is both scattered and absorbed, giving rise to brilliant colors. One available technique for measuring these processes, ensemble extinction spectroscopy, only measures the sum of scattering and absorption. Although the spectral responses of these processes are closely related, their relative efficiencies can differ significantly as a function of nanoparticle size and shape. For some applications, researchers may need techniques that can quantitatively measure absorption or scattering alone. Through advances in single particle spectroscopy, researchers can overcome this problem, separately determining the radiative (elastic and inelastic scattering) and nonradiative (absorption) properties of surface plasmons. Furthermore, because we can use the same sample preparation for both single particle spectroscopy measurements and electron microscopy, this technique provides detailed structural information and a direct correlation between optical properties and nanostructure morphology. In this Account, we present our quantitative investigations of both radiative (scattering and one-photon luminescence) and nonradiative (absorption) properties of the same individual plasmonic nanostructures employing different single particle spectroscopy techniques. In particular, we have used a combined setup to study the same structure with dark-field scattering spectroscopy, photothermal heterodyne imaging, confocal luminescence microscopy, and scanning electron microscopy. While Mie theory thoroughly describes the overall size dependence of scattering and absorption for nanospheres, our real samples deviate significantly from the predicted trend: their particle shape is not perfectly spherical, especially when supported on a substrate. Because of the high excitation rate in laser based single particle measurements, we can efficiently detect one-photon luminescence despite a low quantum yield. For gold nanoparticles, the luminescence spectrum follows the scattering response, and therefore we assigned it to the emission of a plasmon. Due to strong near-field interactions the plasmonic response of closely spaced nanoparticles deviates significantly from that of the constituent nanoparticles. This response arises from coupled surface plasmon modes that combine those of the individual nanoparticles. Our correlated structural and optical imaging strategy is especially powerful for understanding these collective modes and their dependence on the assembly geometry.

15.
Langmuir ; 28(24): 9131-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22515552

RESUMO

We present in situ observations of adsorption of bovine serum albumin (BSA) on citrate-stabilized gold nanospheres. We implemented scattering correlation spectroscopy as a tool to quantify changes in the nanoparticle brownian motion resulting from BSA adsorption onto the nanoparticle surface. Protein binding was observed as an increase in the nanoparticle hydrodynamic radius. Our results indicate the formation of a protein monolayer at similar albumin concentrations as those found in human blood. Additionally, by monitoring the frequency and intensity of individual scattering events caused by single gold nanoparticles passing the observation volume, we found that BSA did not induce colloidal aggregation, a relevant result from the toxicological viewpoint. Moreover, to elucidate the thermodynamics of the gold nanoparticle-BSA association, we measured an adsorption isotherm which was best described by an anticooperative binding model. The number of binding sites based on this model was consistent with a BSA monolayer in its native state. In contrast, experiments using poly(ethylene glycol)-capped gold nanoparticles revealed no evidence for adsorption of BSA.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...