Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 349: 122721, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754813

RESUMO

AIMS: Infection is a complication after stroke and outcomes vary by sex. Thus, we investigated if sepsis affects brain from ischemic stroke and sex involvement. MAIN METHODS: Male and female Wistar rats, were submitted to middle cerebral artery occlusion (MCAO) and after 7 days sepsis to cecal ligation and perforation (CLP). Infarct size, neuroinflammation, oxidative stress, and mitochondrial activity were quantified 24 h after CLP in the prefrontal cortex and hippocampus. Survival and neurological score were assessed up to 15 days after MCAO or 8 days after CLP (starting at 2 h after MCAO) and memory at the end. KEY FINDINGS: CLP decreased survival, increased neurological impairments in MCAO females. Early, in male sepsis following MCAO led to increased glial activation in the brain structures, and increased TNF-α and IL-1ß in the hippocampus. All groups had higher IL-6 in both tissues, but the hippocampus had lower IL-10. CLP potentiated myeloperoxidase (MPO) in the prefrontal cortex of MCAO male and female. In MCAO+CLP, only male increased MPO and nitrite/nitrate in hippocampus. Males in all groups had protein oxidation in the prefrontal cortex, but only MCAO+CLP in the hippocampus. Catalase decreased in the prefrontal cortex and hippocampus of all males and females, and MCAO+CLP only increased this activity in males. Female MCAO+CLP had higher prefrontal cortex complex activity than males. In MCAO+CLP-induced long-term memory impairment only in females. SIGNIFICANCE: The parameters evaluated for early sepsis after ischemic stroke show a worse outcome for males, while females are affected during long-term follow-up.

2.
J Neurochem ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344837

RESUMO

Autism spectrum disorder (ASD) is characterized by repetitive behaviors and deficits in social interaction. Its etiology is not completely clear, but both genetic and environmental factors contribute to and influence its development and course. The increased number of autism cases in recent years has been strongly associated with increased exposure to heavy metals. Mercury (Hg) has gained prominence in the scientific literature as a result of its presence as an urban pollutant and well-described neurotoxicity. This review assessed the relationship between Hg exposure in the pre- and post-natal period and ASD. The systematic review identified observational clinical studies and pre-clinical trials in journals indexed in the PubMed, Embase, ProQuest, and LILACS databases. The aim of this study was to investigate the association between exposure to Hg and ASD and to define the critical period of exposure. A total of 57 articles were selected for this review, with 35 articles (61.40%) identifying a positive association between ASD and Hg, while 22 articles (38.60%) did not find the same outcome. The biological samples most used to analyze Hg body burdens were hair (36.84%) and blood (36.84%). Most case-control studies found an increase in Hg levels in individuals with ASD who were exposed to a polluted environment in the post-natal period. Taken together, the studies suggest that these patients have a deficient detoxification system, and this could worsen the symptoms of the disorder. However, new studies addressing the influence of Hg on the post-natal nervous system and its relationship with ASD should be carried out.

3.
Mol Neurobiol ; 61(1): 239-251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603152

RESUMO

Bacterial meningitis is considered a life-threatening condition with high mortality rates. In response to the infection, signaling cascades, producing pro-inflammatory mediators trigger an exacerbated host immune response. Another inflammatory pathway occurs through the activation of inflammasomes. Studies highlight the role of the NLR family pyrin domain containing 3 (NLRP3) in central nervous system disorders commonly involved in neuroinflammation. We aimed to investigate the role of NLRP3 and its inhibitor MCC950 on neurochemical, immunological, and behavioral parameters in the early and late stages of experimental pneumococcal meningitis. For this, adult male Wistar rats received an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a placebo. The animals were divided into control/saline, control/MCC950, meningitis/saline, and meningitis/MCC950. Immediately after the meningitis induction, the animals received 140 ng/kg MCC950 via intracisternal injection. For the acute protocol, 24 h after induction, brain structures were collected to evaluate cytokines, NLRP3, and microglia. In the long-term group, the animals were submitted to open field and recognition of new objects tests at ten days after the meningitis induction. After the behavioral tests, the same markers were evaluated. The animals in the meningitis group at 24 h showed increased levels of cytokines, NLRP3, and IBA-1 expression, and the use of the MCC950 significantly reduced those levels. Although free from infection, ten days after meningitis induction, the animals in the meningitis group had elevated cytokine levels and demonstrated behavioral deficits; however, the single dose of NLRP3 inhibitor rescued the behavior deficits and decreased the brain inflammatory profile.


Assuntos
Meningite Pneumocócica , Animais , Masculino , Ratos , Citocinas/metabolismo , Inflamassomos/metabolismo , Transtornos da Memória , Meningite Pneumocócica/complicações , Meningite Pneumocócica/tratamento farmacológico , Modelos Teóricos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Wistar , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
5.
J Neuroinflammation ; 19(1): 268, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333747

RESUMO

The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for the reduction of inflammatory parameters and mitochondrial damage in animals submitted to polymicrobial sepsis. To test our hypothesis, adult male Wistar rats were submitted to the cecal ligation and perforation (CLP) model for sepsis induction and after receiving an injection of MFA (doses of 10, 30, and 50 mg/kg) or sterile saline (1 mL/kg). At 24 h after sepsis induction, the frontal cortex and hippocampus were dissected to analyze the levels of TNF-α, IL-1ß, and IL-18; oxidative damage (thiobarbituric acid reactive substances (TBARS), carbonyl, and DCF-DA (oxidative parameters); protein expression (mitochondrial transcription factor A (TFAM), NLRP-3, 8-oxoG; Bax, Bcl-2 and (ionized calcium-binding adaptor molecule 1 (IBA-1)); and the activity of mitochondrial respiratory chain complexes. It was observed that the septic group in both structures studied showed an increase in proinflammatory cytokines mediated by increased activity in NLRP-3, with more significant oxidative damage and higher production of reactive oxygen species (ROS) by mitochondria. Damage to mtDNA it was also observed with an increase in 8-oxoG levels and lower levels of TFAM and NGF-1. In addition, this group had an increase in pro-apoptotic proteins and IBA-1 positive cells. However, MFA at doses of 30 and 50 mg/kg decreased inflammasome activity, reduced levels of cytokines and oxidative damage, increased bioenergetic efficacy and reduced production of ROS and 8-oxoG, and increased levels of TFAM, NGF-1, Bcl-2, reducing microglial activation. As a result, it is suggested that MFA induces protection in the central nervous system early after the onset of sepsis.


Assuntos
Ácido Mefenâmico , Sepse , Animais , Ratos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Ácido Mefenâmico/metabolismo , Ácido Mefenâmico/farmacologia , Ratos Wistar , Inflamassomos/metabolismo , Fator de Crescimento Neural/metabolismo , Mitocôndrias , Sepse/complicações , Sepse/tratamento farmacológico , DNA Mitocondrial , Citocinas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
mBio ; 13(5): e0188622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036510

RESUMO

Pneumococcal meningitis, inflammation of the meninges due to an infection of the Central Nervous System caused by Streptococcus pneumoniae (the pneumococcus), is the most common form of community-acquired bacterial meningitis globally. Aquaporin 4 (AQP4) water channels on astrocytic end feet regulate the solute transport of the glymphatic system, facilitating the exchange of compounds between the brain parenchyma and the cerebrospinal fluid (CSF), which is important for the clearance of waste away from the brain. Wistar rats, subjected to either pneumococcal meningitis or artificial CSF (sham control), received Evans blue-albumin (EBA) intracisternally. Overall, the meningitis group presented a significant impairment of the glymphatic system by retaining the EBA in the CSF compartments compared to the uninfected sham group. Our results clearly showed that during pneumococcal meningitis, the glymphatic system does not function because of a detachment of the astrocytic end feet from the blood-brain barrier (BBB) vascular endothelium, which leads to misplacement of AQP4 with the consequent loss of the AQP4 water channel's functionality. IMPORTANCE The lack of solute drainage due to a dysfunctional glymphatic system leads to an increase of the neurotoxic bacterial material in the CSF compartments of the brain, ultimately leading to brain-wide neuroinflammation and neuronal damage with consequent impairment of neurological functions. The loss of function of the glymphatic system can therefore be a leading cause of the neurological sequelae developing post-bacterial meningitis.


Assuntos
Sistema Glinfático , Meningite Pneumocócica , Animais , Ratos , Albuminas/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Meningite Pneumocócica/metabolismo , Ratos Wistar
7.
Sci Rep ; 12(1): 11529, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798809

RESUMO

Sepsis is defined as a life-threatening organ dysfunction caused by an inappropriate host response to infection. The presence of oxidative stress and inflammatory mediators in sepsis leads to dysregulated gene expression, leading to a hyperinflammatory response. Environmental conditions play an important role in various pathologies depending on the stimulus it presents. A standard environment condition (SE) may offer reduced sensory and cognitive stimulation, but an enriched environment improves spatial learning, prevents cognitive deficits induced by disease stress, and is an important modulator of epigenetic enzymes. The study evaluated the epigenetic alterations and the effects of the environmental enrichment (EE) protocol in the brain of animals submitted to sepsis by cecal ligation and perforation (CLP). Male Wistar rats were divided into sham and CLP at 24 h, 72 h, 10 days and 30 days after sepsis. Other male Wistar rats were distributed in a SE or in EE for forty-five days. Behavioral tests, analysis of epigenetic enzymes:histone acetylase (HAT), histone deacetylase (HDAC) and DNA methyltransferase (DNMT), biochemical and synaptic plasticity analyzes were performed. An increase in HDAC and DNMT activities was observed at 72 h, 10 days and 30 days. There was a positive correlation between epigenetic enzymes DNMT and HDAC 24 h, 10 days and 30 days. After EE, HDAC and DNMT enzyme activity decreased, cognitive impairment was reversed, IL1-ß levels decreased and there was an increase in PSD-95 levels in the hippocampus. Interventions in environmental conditions can modulate the outcomes of long-term cognitive consequences associated with sepsis, supporting the idea of the potential benefits of EE.


Assuntos
Hipocampo , Sepse , Animais , Cognição , Modelos Animais de Doenças , Epigênese Genética , Hipocampo/metabolismo , Masculino , Ratos , Ratos Wistar , Sepse/complicações
8.
Neurochem Res ; 47(3): 613-621, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34674138

RESUMO

Critical illness encompasses a wide spectrum of life-threatening clinical conditions requiring intensive care. Our objective was to evaluate cognitive, inflammatory and cellular metabolism alterations in the central nervous system in an animal model of critical illness induced by zymosan. For this Wistar rats that were divided into Sham and zymosan. Zymozan was administered once intraperitoneally (30 g/100 g body weight) diluted in mineral oil. The animals were submitted to behavioral tests of octagonal maze, inhibitory avoidance and elevated plus maze. Brain structures (cortex, prefrontal and hippocampus) were removed at 24 h, 4, 7 and 15 days after zymosan administration for analysis of cytokine levels (TNF-α, IL-1b, IL-6 and IL-10), oxidative damage and oxygen consumption. Zymosan-treated animals presented mild cognitive impairment both in aversive (inhibitory avoidance) and non-aversive (octagonal maze) tasks by day 15. However, they did not show increase in anxiety (elevated-plus maze). The first neurochemical alteration found was an increase in brain pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) at day 4th in the hippocampus. In cortex, a late (7 and 15 days) increase in TNF-α was also noted, while the anti-inflammatory cytokine IL-10 decrease from 4 to 15 days. Oxygen consumption was decreased in the hippocampus and pre-frontal, but not cortex, only at 7 days. Additionally, it was observed a late (15 days) increase in oxidative damage parameters. This characterization of brain dysfunction in rodent model of critical illness reproduces some of the alterations reported in humans such neuropsychiatric disorders, especially depression, memory loss and cognitive changes and can add to the nowadays used models.


Assuntos
Disfunção Cognitiva , Estado Terminal , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Roedores
9.
Crit Care Med ; 50(3): e241-e252, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402457

RESUMO

OBJECTIVES: Sepsis is a life-threatening organ dysfunction caused by a host's unregulated immune response to eliminate the infection. After hospitalization, sepsis survivors often suffer from long-term impairments in memory, attention, verbal fluency, and executive functioning. To understand the effects of sepsis and the exacerbated peripheral inflammatory response in the brain, we asked the question: What are the findings and inflammatory markers in the brains of deceased sepsis patients? To answer this question, we conducted this systematic review by the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. DATA SOURCES: Relevant studies were identified by searching the PubMed/National Library of Medicine, PsycINFO, EMBASE, Bibliographical Index in Spanish in Health Sciences, Latin American and Caribbean Health Sciences Literature, and Web of Science databases for peer-reviewed journal articles published on April 05, 2021. STUDY SELECTION: A total of 3,745 articles were included in the primary screening; after omitting duplicate articles, animal models, and reviews, 2,896 articles were selected for the study. These studies were selected based on the title and abstract, and 2,772 articles were still omitted based on the exclusion criteria. DATA EXTRACTION: The complete texts of the remaining 124 articles were obtained and thoroughly evaluated for the final screening, and 104 articles were included. DATA SYNTHESIS: The postmortem brain had edema, abscess, hemorrhagic and ischemic injuries, infarction, hypoxia, atrophy, hypoplasia, neuronal loss, axonal injuries, demyelination, and necrosis. CONCLUSIONS: The mechanisms by which sepsis induces brain dysfunction are likely to include vascular and neuronal lesions, followed by the activation of glial cells and the presence of peripheral immune cells in the brain.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Sepse/metabolismo , Sepse/patologia , Atrofia/patologia , Autopsia , Biomarcadores , Encéfalo/patologia , Humanos , Inflamação/patologia , Imageamento por Ressonância Magnética , Sepse/diagnóstico por imagem
10.
Neurosci Biobehav Rev ; 127: 504-513, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33992694

RESUMO

Microglia are involved in many dynamic processes in the central nervous system (CNS) including the development of inflammatory processes and neuromodulation. Several sedative, analgesic or anaesthetic drugs, such as opioids, ∝2-adrenergic agonists, ketamine, benzodiazepines and propofol can cause both neuroprotective and harmful effects on the brain. The purpose of this review is to present the main findings on the use of these drugs and the mechanisms involved in microglial activation. Alpha 2-adrenergic agonists, propofol and benzodiazepines have several pro- or anti-inflammatory effects on microglia. Long-term use of benzodiazepines and propofol causes neuroapoptotic effects and α2-adrenergic agonists may attenuate these effects. Conversely, morphine and fentanyl may have proinflammatory effects, causing behavioural changes in patients and changes in cell viability in vitro. Conversely, chronic administration of morphine induces CCL5 chemokine expression in microglial cells that promotes their survival.


Assuntos
Anestésicos , Encefalite , Encéfalo , Humanos , Hipnóticos e Sedativos/efeitos adversos , Inflamação/induzido quimicamente , Microglia
11.
Mol Neurobiol ; 58(6): 2724-2733, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33495933

RESUMO

Sepsis is an organ dysfunction caused by a host's unregulated response to infection, causing long-term brain dysfunction with microglial activation, the release of inflammatory components, and mitochondrial changes. Neuroinflammation can increase the expression of the 18-kD translocator protein (TSPO) in the mitochondria, leading to the activation of the microglia and the release of inflammatory components. The antagonist PK-11195 can modulate TSPO and reduce microglial activation and cognitive damage presented in an animal model of sepsis. The aim of this was to evaluate the effects of PK-11195 on long-term brain inflammation and cognitive impairment in an animal model of sepsis. Wistar rats, 60 days old, were submitted to cecal ligation and puncture (CLP) surgery, divided into groups control/saline, control/PK-11195, sepsis/saline, and sepsis/PK-11195. Immediately after surgery, the antagonist PK-11195 was administered at a dose of 3 mg/kg. Ten days after CLP surgery, the animals were submitted to behavioral tests and determination of brain inflammatory parameters. The sepsis/saline group presented cognitive damage. However, there was damage prevention in animals that received PK-11195. Besides, the sepsis increased the levels of cytokines and M1 microglia markers and caused oxidative damage. However, PK-11195 had the potential to decrease inflammation. These events show that the modulation of neuroinflammation during sepsis by PK-11195, possibly related to changes in TSPO, improves mitochondrial function in the animals' brains. In conclusion, the antagonist PK-11195 attenuated brain inflammation and prevented cognitive impairment in animals subjected to sepsis.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Isoquinolinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Sepse/tratamento farmacológico , Sepse/microbiologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/metabolismo , Isoquinolinas/farmacologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
12.
Neurotherapeutics ; 18(1): 640-653, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886341

RESUMO

Pneumococcal meningitis is a life-threatening infection of the central nervous system (CNS), and half of the survivors of meningitis suffer from neurological sequelae. We hypothesized that pneumococcal meningitis causes CNS inflammation via the disruption of the blood-brain barrier (BBB) and by increasing the receptor for advanced glycation end product (RAGE) expression in the brain, which causes glial cell activation, leading to cognitive impairment. To test our hypothesis, 60-day-old Wistar rats were subjected to meningitis by receiving an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a control group and were treated with a RAGE-specific inhibitor (FPS-ZM1) in saline. The rats also received ceftriaxone 100 mg/kg intraperitoneally, bid, and fluid replacements. Experimental pneumococcal meningitis triggered BBB disruption after meningitis induction, and FPS-ZM1 treatment significantly suppressed BBB disruption. Ten days after meningitis induction, surviving animals were free from infection, but they presented increased levels of TNF-α and IL-1ß in the prefrontal cortex (PFC); high expression levels of RAGE, amyloid-ß (Aß1-42), and microglial cell activation in the PFC and hippocampus; and memory impairment, as evaluated by the open-field, novel object recognition task and Morris water maze behavioral tasks. Targeted RAGE inhibition was able to reduce cytokine levels, decrease the expression of RAGE and Aß1-42, inhibit microglial cell activation, and improve cognitive deficits in meningitis survivor rats. The sequence of events generated by pneumococcal meningitis can persist long after recovery, triggering neurocognitive decline; however, RAGE blocker attenuated the development of brain inflammation and cognitive impairment in experimental meningitis.


Assuntos
Disfunção Cognitiva/etiologia , Meningite Pneumocócica/complicações , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Benzamidas/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Western Blotting , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Masculino , Meningite Pneumocócica/tratamento farmacológico , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Teste de Campo Aberto/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
13.
Neurochem Int ; 142: 104906, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232757

RESUMO

The nervous system is one of the first systems to be affected during sepsis. Sepsis not only has a high risk of mortality, but could also lead to cerebral dysfunction and cognitive impairment in long-term survival patients. The receptor for advanced glycation end products (RAGE) can interact with several ligands, and its activation triggers a series of cell signaling events, resulting in the hyperinflammatory condition related to sepsis. Recent studies show that elevated levels of S100B (RAGE ligand) are associated with the pathophysiology of neurodegenerative disorders. They also participate in inflammatory brain diseases and may lead to an increased activation of microglia and astrocytes, leading to neuronal death. This study aimed to determine the effect of S100B inhibition on the neuroinflammatory response in sepsis. Sepsis was induced in Wistar rats by cecal ligation and perforation (CLP). There were three groups: Sham, CLP, and CLP +10 µg/kg of monoclonal antibody (Anti-S100B) administered intracerebroventricularly. The animals were killed 30 days after sepsis following behavioral evaluation by open field, novel object recognition, and splash test. The hippocampus, prefrontal cortex, and amydgala were used for the determination of S100B and RAGE proteins by western blotting and for the evaluation of cytokine levels and verification of the number of microglial cells by immunohistochemistry. On day 30, both the Sham and CLP + anti-S100B groups were capable of recovering the habitual memory in the open field task. Regarding novel object recognition, Sham and CLP + anti-S100B groups increased the recognition index during the test session in comparison to the training session. There was a significant increase in the time of grooming in CLP + anti-S100B in comparison to the CLP group. There was a modulation of cytokine levels and immunohistochemistry showed that the CLP + anti-S100B group had a decrease in the number of microglial cells only in the hippocampus. These results helped to understand the role of S100B protein in the pathophysiology of sepsis-associated encephalopathy and could be helpful to further experimental studies regarding this subject.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Mediadores da Inflamação/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sepse/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Encéfalo/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Sepse/tratamento farmacológico , Sepse/psicologia , Fatores de Tempo
14.
An Acad Bras Cienc ; 92(4): e20190925, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33295575

RESUMO

Ammonia is involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy. Few is known about the effects of gestational exposition to ammonia in the developing brain, and the possible long-term consequences of such exposure. We aimed to evaluate the effects of ammonia exposure during the gestation and the possible long-term cognitive alterations on pups. Eight female rats were divided into two groups: (1) control (saline solution); (2) ammonia (ammonium acetate, 2,5mmol/Kg). Each rat received a single subcutaneous injection during all gestational period. The brains from 1-day-old rats were obtained to the determination of thiobarbituric acid reactive species (TBARS), protein carbonyl and nitrite/nitrate levels. Some animals were followed 30 days after delivery and were subjected to the step-down inhibitory avoidance task. It was observed a significant increase in protein carbonyl, but not TBARS or nitrite/nitrate levels, in pups exposed to ammonia. Rats exposed to ammonia presented long-term cognitive impairment. Gestational exposition to ammonia induces protein oxidative damage in the neonatal rat brain, and long-term cognitive impairment.


Assuntos
Amônia , Encéfalo , Amônia/toxicidade , Animais , Cognição , Estresse Oxidativo , Gravidez , Ratos , Ratos Wistar
15.
J Affect Disord ; 277: 410-416, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866799

RESUMO

INTRODUCTION: Currently, there is a growing emphasis on the study of intestinal signaling as an influencer in the pathophysiology of neuropsychiatric diseases, and the gut-brain axis is recognized as a communication route through endocrine, immune, and neural pathways (vagus nerve). Studies have shown that diets that modify the microbiota can reduce stress-related behavior and hypothalamic-pituitary-adrenal axis activation. Investigators have used fecal microbiota transplantation (FMT) approaches to demonstrate that stress-related microbiota composition plays a causal role in behavioral changes. AIM: We hypothesized that FMT may present immunomodulatory, biochemical, endocrine, cognitive, and behavioral benefits in stress situations and that these changes can be mediated via the vagus nerve. METHODS: Animals were subjected to a chronic mild stress (CMS) protocol. In one experiment, animals were divided into five groups: control, control + FMT, control + FMT + CMS, CMS + saline, and CMS + FMT. The animals received FMT, and behavioral tests were performed; cytokine and carbonyl levels were measured. In a second experiment, animals were submitted to vagotomy and divided into two groups: CMS + FMT and CMS + vagotomy + FMT. RESULTS: Animals submitted to the CMS protocol or that received FMT from stressed animals showed behavioral changes and changes in neuroactive substances (increased IL-6 and TNF-α levels and carbonyl proteins). The FMT of healthy donors improved the analyzed parameters. In addition, vagotomy influenced beneficial FMT results, confirmed by behavioral testing and protein carbonyl in the hippocampus. CONCLUSION: Manipulation of the microbiota reversed the behavioral and biochemical changes induced by the CMS protocol, and the vagus nerve influenced the gut-brain axis response.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Encéfalo , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Nervo Vago
16.
Clin Sci (Lond) ; 134(7): 765-776, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32219335

RESUMO

BACKGROUND: In order to modulate microglial phenotypes in vivo, M1 microglia were depleted by administration of gadolinium chloride and the expression of M2 microglia was induced by IL-4 administration in an animal model of sepsis to better characterize the role of microglial phenotypes in sepsis-induced brain dysfunction. METHODS: Wistar rats were submitted to sham or cecal ligation and perforation (CLP) and treated with IL-4 or GdCl3. Animals were submitted to behavioral tests 10 days after surgery. In a separated cohort of animals at 24 h, 3 and 10 days after surgery, hippocampus was removed and cytokine levels, M1/M2 markers and CKIP-1 levels were determined. RESULTS: Modulation of microglia by IL-4 and GdCl3 was associated with an improvement in long-term cognitive impairment. When treated with IL-4 and GdCl3, the reduction of pro-inflammatory cytokines was apparent in almost all analyzed time points. Additionally, CD11b and iNOS were increased after CLP at all time points, and both IL-4 and GdCl3 treatments were able to reverse this. There was a significant decrease in CD11b gene expression in the CLP+GdCl3 group. IL-4 treatment was able to decrease iNOS expression after sepsis. Furthermore, there was an increase of CKIP-1 in the hippocampus of GdCl3 and IL-4 treated animals 10 days after CLP induction. CONCLUSIONS: GdCl3 and IL-4 are able to manipulate microglial phenotype in an animal models of sepsis, by increasing the polarization toward an M2 phenotype IL-4 and GdCl3 treatment was associated with decreased brain inflammation and functional recovery.


Assuntos
Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Encefalite/prevenção & controle , Gadolínio/farmacologia , Hipocampo/efeitos dos fármacos , Interleucina-4/farmacologia , Microglia/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Antígeno CD11b/metabolismo , Proteínas de Transporte/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/patologia , Encefalite/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Microglia/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Ratos Wistar , Sepse/metabolismo , Sepse/patologia , Sepse/fisiopatologia , Fatores de Tempo
17.
Mol Neurobiol ; 57(2): 1159-1169, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31701437

RESUMO

Inflammatory cytokines are related to impaired learning and memory processes in the central nervous system, contributing to the cognitive dysfunction present in sepsis survivors. In sepsis, brain of survivors presented increased deposition of amyloid-beta (Aß) peptide and this was associated with cognitive impairment. However, it is not known if the upregulation of secretase pathway is involved the deposition of Aß peptide and consequent development of cognitive impairment in survivors. The aim of the study is to evaluate the effects of secretase inhibitors on behavioral, Aß accumulation, and neuroinflammatory parameters in rats submitted to sepsis. Sepsis was induced by cecal ligation and perforation in Wistar rats, and the activity of alpha-, beta-, and gamma-secretases was determined in the hippocampus and prefrontal at different times. Additionally, in a different cohort of animal's epigallocatechin gallate, a beta-secretase inhibitor or a gamma-secretase inhibitor was administrated once a day for three consecutive days. Fifteen or 30 days after sepsis induction, Aß content, TNF-α, IL-1ß, and IL-6 and cognitive performance were determined. There was no increase in alpha-secretase activity. Both beta- and gamma-secretase activities increased, mainly late after sepsis. The inhibition of beta- or gamma-secretases improved cognitive performance 10 days after sepsis induction, and beta-secretase inhibition improved cognitive performance up to 30 days after sepsis induction. Furthermore, beta-secretase inhibition decreased IL-1ß and Aß brain levels. It was demonstrated that during sepsis development there was an increase in the amyloidogenic route, and the inhibition of this pathway promoted attenuation of neuroinflammation, Aß peptide content, and improvement of cognitive impairment.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Disfunção Cognitiva/metabolismo , Encefalite/metabolismo , Sepse/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Ratos Wistar , Sepse/complicações
18.
Clin Sci (Lond) ; 133(18): 1993-2004, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31527095

RESUMO

Background: Several different mechanisms have been proposed to explain long-term cognitive impairment in sepsis survivors. The role of persisting mitochondrial dysfunction is not known. We thus sought to determine whether stimulation of mitochondrial dynamics improves mitochondrial function and long-term cognitive impairment in an experimental model of sepsis.Methods: Sepsis was induced in adult Wistar rats by cecal ligation and perforation (CLP). Animals received intracerebroventricular injections of either rosiglitazone (biogenesis activator), rilmenidine, rapamycin (autophagy activators), or n-saline (sham control) once a day on days 7-9 after the septic insult. Cognitive impairment was assessed by inhibitory avoidance and object recognition tests. Animals were killed 24 h, 3 and 10 days after sepsis with the hippocampus and prefrontal cortex removed to determine mitochondrial function.Results: Sepsis was associated with both acute (24 h) and late (10 days) brain mitochondrial dysfunction. Markers of mitochondrial biogenesis, autophagy and mitophagy were not up-regulated during these time points. Activation of biogenesis (rosiglitazone) or autophagy (rapamycin and rilmenidine) improved brain ATP levels and ex vivo oxygen consumption and the long-term cognitive impairment observed in sepsis survivors.Conclusion: Long-term impairment of brain function is temporally related to mitochondrial dysfunction. Activators of autophagy and mitochondrial biogenesis could rescue animals from cognitive impairment.


Assuntos
Disfunção Cognitiva/complicações , Disfunção Cognitiva/patologia , Mitocôndrias/patologia , Sepse/complicações , Sepse/patologia , Animais , Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Ratos Wistar , Rilmenidina/farmacologia , Rosiglitazona/farmacologia , Sirolimo/farmacologia , Análise de Sobrevida , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Pharmacol Rep ; 71(1): 24-31, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30366345

RESUMO

BACKGROUND: A periodontal lesion is a consequence of chronic inflammatory processes, itself triggered by a bacterial infection of the pulpal and endodontic microenvironment. Evidence suggests that periodontal lesion induction could alter inflammatory cytokines leading to behavior changes. These effects in the context of anxiety and depressive behavior have been not full investigated. We aimed to observe anxiety- and depressive-like behavioral in rodent subjected to periapical dental lesions. METHODS: Pro-inflammatory cytokines levels also were investigated in the frontal cortex and hippocampus. Parameters related to hypothalamic-pituitary-adrenal (HPA) axis activation also were evaluated. Wistar rats were divided in groups: control/saline; control/imipramine; periapical lesion/saline; and periapical lesion/imipramine. Three weeks after induction of the periapical dental lesion, they were subjected to behavioral tests. RESULTS: In the periapical lesion group was demonstrated anhedonic behavior and depressive-like behavior. In the elevated plus-maze test the periapical lesion group had an increase in the number of entries and spent more time in the closed arms. Imipramine treatment was able to reverse depressive- and anxiety-like behaviors. In the hippocampus and frontal cortex tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6, and serum adrenocorticotropic hormone (ACTH) levels were higher in the periapical lesion group. However, rats treated with imipramine had lower IL-1ß and ACTH levels. CONCLUSIONS: Our results revealed depressive- and anxiety-like behaviors following induction of a specific dental lesion. These effects could be associated to higher levels of brain pro-inflammatory cytokines and HPA axis changes. Antidepressants treatments could be an alternative to treat comorbidities associated to periodontal lesions.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Antidepressivos Tricíclicos/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Depressão/tratamento farmacológico , Imipramina/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Doenças Periapicais/complicações , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Ansiedade/psicologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Depressão/etiologia , Depressão/metabolismo , Depressão/psicologia , Modelos Animais de Doenças , Comportamento Alimentar/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Doenças Periapicais/metabolismo , Ratos Wistar
20.
J Psychiatr Res ; 100: 71-83, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29494891

RESUMO

Evidence suggest that prenatal immune system disturbance contributes largely to the pathophysiology of neuropsychiatric disorders. We investigated if maternal immune activation (MIA) could induce inflammatory alterations in fetal brain and pregnant rats. Adult rats subjected to MIA also were investigated to evaluate if ketamine potentiates the effects of infection. On gestational day 15, Wistar pregnant rats received lipopolysaccharide (LPS) to induce MIA. After 6, 12 and 24 h, fetus brain, placenta, and amniotic fluid were collected to evaluate early effects of LPS. MIA increased oxidative stress and expression of metalloproteinase in the amniotic fluid and fetal brain. The blood brain barrier (BBB) integrity in the hippocampus and cortex as well integrity of placental barrier (PB) in the placenta and fetus brain were dysregulated after LPS induction. We observed elevated pro- and anti-inflammatory cytokines after LPS in fetal brain. Other group of rats from postnatal day (PND) 54 after LPS received injection of ketamine at the doses of 5, 15, and 25 mg/kg. On PND 60 rats were subjected to the memories tests, spontaneous locomotor activity, and pre-pulse inhibition test (PPI). Rats that receive MIA plus ketamine had memory impairment and a deficit in the PPI. Neurotrophins were increased in the hippocampus and reduced in the prefrontal cortex in the LPS plus ketamine group. MIA induced oxidative stress and inflammatory changes that could be, at least in part, related to the dysfunction in the BBB and PB permeability of pregnant rats and offspring. Besides, this also generates behavioral deficits in the rat adulthood's that are potentiated by ketamine.


Assuntos
Comportamento Animal , Barreira Hematoencefálica/imunologia , Encéfalo , Citocinas/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Inflamação/imunologia , Ketamina/farmacologia , Lipopolissacarídeos/farmacologia , Transtornos da Memória , Placenta/imunologia , Complicações na Gravidez/imunologia , Inibição Pré-Pulso , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/fisiopatologia , Embrião de Mamíferos , Feminino , Inflamação/etiologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/imunologia , Transtornos da Memória/fisiopatologia , Gravidez , Complicações na Gravidez/induzido quimicamente , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...