Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731597

RESUMO

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Assuntos
Artemisia , Artemisininas , Fibroblastos , Fibrose , Humanos , Artemisininas/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Artemisia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sobrevivência Celular/efeitos dos fármacos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Actinas/metabolismo , Actinas/genética , Artesunato/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Artemeter/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia
2.
ACS Biomater Sci Eng ; 9(5): 2292-2300, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37126371

RESUMO

The edible nature of many plants makes leaves particularly useful as scaffolds for the development of cultured meat, where animal tissue is grown in the laboratory setting. Recently, we demonstrated that decellularized spinach leaves can serve as scaffolds to grow and differentiate cells for cultured meat products. However, conventional decellularization methods use solutions that are not considered safe for use in food, such as organic solvents (hexanes) and detergents (triton X-100 (TX100)). This study modified decellularization protocols to incorporate detergents that are regulated (REG) by the United States Food and Drug Administration (FDA) for use in food, such as Polysorbate 20 (PS20), and eliminates the use of hexanes for cuticle removal. Spinach leaves were decellularized with sodium dodecyl sulfate and then with either TX100 (control) or PS20. The average DNA content for TX100 samples and PS20 samples was similar (1.3 ± 0.07 vs 1.3 ± 0.05 ng/mg; TX100 vs PS20, p = ns). The importance of cuticle removal was tested by removing hexanes from the protocol. Groups that included the cuticle removal step exhibited an average reduction in DNA content of approximately 91.7%, and groups that omitted the cuticle removal step exhibited an average reduction of approximately 90.3% (p = ns), suggesting that the omission of the cuticle removal step did not impede decellularization. Lastly, primary bovine satellite cells (PBSCs) were cultured for 7 days (d) on the surface of spinach leaves decellularized using the REG protocol. After the 7 d incubation period, PBSCs grown on the surface of REG scaffolds had an average viability of approximately 97.4%. These observations suggest that the REG protocol described in this study is an effective decellularization method, more closely adhering to food safety guidelines, that could be implemented in lab grown meat and alternative protein products.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Bovinos , Engenharia Tecidual/métodos , Detergentes/farmacologia , Hexanos/farmacologia , Matriz Extracelular , Octoxinol/farmacologia , DNA/farmacologia
3.
Acta Pharm Sin B ; 11(2): 322-339, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643815

RESUMO

Fibrosis is a pathological reparative process that can occur in most organs and is responsible for nearly half of deaths in the developed world. Despite considerable research, few therapies have proven effective and been approved clinically for treatment of fibrosis. Artemisinin compounds are best known as antimalarial therapeutics, but they also demonstrate antiparasitic, antibacterial, anticancer, and anti-fibrotic effects. Here we summarize literature describing anti-fibrotic effects of artemisinin compounds in in vivo and in vitro models of tissue fibrosis, and we describe the likely mechanisms by which artemisinin compounds appear to inhibit cellular and tissue processes that lead to fibrosis. To consider alternative routes of administration of artemisinin for treatment of internal organ fibrosis, we also discuss the potential for more direct oral delivery of Artemisia plant material to enhance bioavailability and efficacy of artemisinin compared to administration of purified artemisinin drugs at comparable doses. It is our hope that greater understanding of the broad anti-fibrotic effects of artemisinin drugs will enable and promote their use as therapeutics for treatment of fibrotic diseases.

4.
Cell Biol Int ; 43(11): 1317-1322, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31441159

RESUMO

The anti-malaria drug artesunate and other chemical analogs of artemisinin have demonstrated cytostatic and cytotoxic effects in bacterial and cancer cells. Artemisinin-derived compounds have also been demonstrated to attenuate fibrosis in preclinical animal models, but the mechanisms by which this inhibition occurs are not well-understood. We investigated the effects of artesunate on the emergence of the myofibroblast, which is causally implicated in pro-fibrotic pathologies. CRL-2097 human dermal fibroblasts were analyzed for protein and transcript expression after treatment with artesunate to analyze fibroblast activation. Proliferation and apoptosis were also evaluated following treatment with artesunate in this cell line. Treatment of human dermal fibroblasts with artesunate antagonized fibroblast activation and pro-fibrotic extracellular matrix (ECM) deposition, both at basal culture conditions and when cultured in the presence of exogenous transforming growth factor-ß1 (TGF-ß1), a major pro-fibrotic cytokine. Artesunate-treated fibroblasts also demonstrated decreased proliferation and increased apoptosis. Transcript analysis by quantitative real-time polymerase chain reaction demonstrated that artesunate downregulated expression of pro-fibrotic genes including canonical myofibroblast markers, ECM genes, and several TGF-ß receptors and ligands, and upregulated expression of cell cycle inhibitors and matrix-metalloproteinases. Together, these data demonstrate that artesunate antagonizes fibroblast activation and decreases expression of pro-fibrotic genes, while also promoting myofibroblast apoptosis, suggesting that these mechanisms may be responsible in part for the anti-fibrotic effects of artesunate described previously.


Assuntos
Artesunato/farmacologia , Miofibroblastos/metabolismo , Pele/patologia , Fator de Crescimento Transformador beta1/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibrose , Humanos , Miofibroblastos/citologia
5.
Int J Mol Med ; 43(1): 325-335, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30365043

RESUMO

Fibroblast activation is a key step in the establishment of skin fibrosis induced by acute injury, and it is characterized by the differentiation of plastic resident tissue fibroblasts into contractile, extracellular matrix­secreting myofibroblasts. As fibroblast activation must be regulated in vivo, fibroblasts receive signals from the surrounding environment that initiate their fibrotic program. Thus, the present study investigated the effects of mitogen­activated protein kinase (MAPK) signaling pathways on fibroblast activation. It was demonstrated in primary human dermal fibroblasts that small molecule­mediated inhibition of extracellular signal­regulated kinase (ERK) and c­Jun N­terminal kinase (JNK) potentiated fibroblast activation, and that small molecule­mediated inhibition of p38 antagonized fibroblast activation. ERK and JNK inhibition cooperatively enhanced fibroblast activation mediated by treatment with exogenous transforming growth factor (TGF)­ß1, and p38 inhibition antagonized ERK inhibitor­mediated or JNK inhibitor­mediated fibroblast activation. Transcript analysis demonstrated that ERK and JNK inhibitor­mediated fibroblast activation was accompanied by distinct changes in the expression of TGF­ß­associated ligands and receptors, and that p38 inhibitor­mediated antagonism of fibroblast activation was accompanied by a distinct expression paradigm of TGF­ß­associated genes, including upregulation of betaglycan. ERK inhibitor­mediated and JNK inhibitor­mediated fibroblast activation was partially antagonized by small molecule­mediated inhibition of TGF­ß receptor (R)1, indicating that these mechanisms of fibroblast activation are partially dependent on TGF­ß/TGF­ßR signaling. These data collectively demonstrate and provide partial explanations of the varied effects and pathway dependencies of MAPK inhibitor­mediated effects on fibroblast activation.


Assuntos
Derme/patologia , Fibroblastos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Cell Mol Life Sci ; 75(20): 3663-3681, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30027295

RESUMO

Fibrosis is a pathological form of aberrant tissue repair, the complications of which account for nearly half of all deaths in the industrialized world. All tissues are susceptible to fibrosis under particular pathological sets of conditions. Though each type of fibrosis has characteristics and hallmarks specific to that particular condition, there appear to be common factors underlying fibrotic diseases. One of these ubiquitous factors is the paradigm of the activated myofibroblast in the promotion of fibrotic phenotypes. Recent research has implicated metabolic byproducts of the amino acid tryptophan, namely serotonin and kynurenines, in the pathology or potential pharmacologic therapy of fibrosis, in part through their effects on development of myofibroblast phenotypes. Here, we review literature underlying what is known mechanistically about the effects of these compounds and their respective pathways on fibrosis. Pharmacologic administration of kynurenine improves scarring outcomes in vivo likely not only through its well-characterized immunosuppressive properties but also via its demonstrated antagonism of fibroblast activation and of collagen deposition. In contrast, serotonin directly promotes activation of fibroblasts via activation of canonical TGF-ß signaling, and overstimulation with serotonin leads to fibrotic outcomes in vivo. Recently discovered feedback inhibition between serotonin and kynurenine pathways also reveals more information about the cellular physiology of tryptophan metabolism and may also underlie possible paradigms for anti-fibrotic therapy. Together, understanding of the effects of tryptophan metabolism on modulation of fibrosis may lead to the development of new therapeutic avenues for treatment through exploitation of these effects.


Assuntos
Fibroblastos/metabolismo , Cinurenina/metabolismo , Serotonina/metabolismo , Triptofano/metabolismo , Diferenciação Celular , Fibroblastos/citologia , Fibrose , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
7.
J Tissue Eng Regen Med ; 12(3): 572-582, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28513058

RESUMO

Smooth muscle cells (SMCs) are essential for tissue engineering strategies to fabricate organs such as blood vessels, the oesophagus and bladder, and to create disease models of these systems. In order for such therapies and models to be feasible, SMCs must be sourced effectively to enable production of large numbers of functional cells. In vitro, SMCs divide slowly and demonstrate short proliferative lifespans compared with other types of cells, including stem cells and fibroblasts, limiting the number of cells that can be derived from expansion in culture of a primary isolation. As such, it would be beneficial to better understand the factors underlying induction and maintenance of SMC phenotypes, in order to produce new sources of SMCs for tissue engineering and disease modelling. Here we report the ability of human dermal fibroblasts to display patterns of gene expression resembling contractile SMCs when cultured under conditions that are known to promote a contractile phenotype in SMCs, including culture on collagen IV, low-serum culture, TGF-ß1 treatment and hypoxia. These factors drive expression of the myogenic transcription factor myocardin, as well as expression of several of its gene targets that are known contributors to contractile phenotype in SMCs, including smooth muscle alpha actin, calponin, and myosin heavy chain. Our results suggest that culture conditions associated with culture of SMCs may be sufficient to induce myogenic gene expression patterns and potential myogenic function in non-muscle cells.


Assuntos
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Contração Muscular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Oxigênio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Derme/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Desenvolvimento Muscular/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Adulto Jovem
8.
Cytokine Growth Factor Rev ; 38: 49-58, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28967471

RESUMO

Fibrosis is a pathological condition that is characterized by the replacement of dead or damaged tissue with a nonfunctional, mechanically aberrant scar, and fibrotic pathologies account for nearly half of all deaths worldwide. The causes of fibrosis differ somewhat from tissue to tissue and pathology to pathology, but in general some of the cellular and molecular mechanisms remain constant regardless of the specific pathology in question. One of the common mechanisms underlying fibroses is the paradigm of the activated fibroblast, termed the "myofibroblast," a differentiated mesenchymal cell with demonstrated contractile activity and a high rate of collagen deposition. Fibroblast growth factor 2 (FGF2), one of the members of the mammalian fibroblast growth factor family, is a cytokine with demonstrated antifibrotic activity in non-human animal, human, and in vitro models. FGF2 is highly pleiotropic and its receptors are present on many different cell types throughout the body, lending a great deal of variety to the potential mechanisms of FGF2 effects on fibrosis. However, recent reports demonstrate that a substantial contribution to the antifibrotic effects of FGF2 comes from the inhibitory effects of FGF2 on connective tissue fibroblasts, activated myofibroblasts, and myofibroblast progenitors. FGF2 demonstrates effects antagonistic towards fibroblast activation and towards mesenchymal transition of potential myofibroblast-forming cells, as well as promotes a gene expression paradigm more reminiscent of regenerative healing, such as that which occurs in the fetal wound healing response, than fibrotic resolution. With a better understanding of the mechanisms by which FGF2 alters the wound healing cascade and results in a shift away from scar formation and towards functional tissue regeneration, we may be able to further address the critical need of therapy for varied fibrotic pathologies across myriad tissue types.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose/metabolismo , Miofibroblastos/metabolismo , Animais , Diferenciação Celular , Fibrose/genética , Expressão Gênica , Humanos , Miofibroblastos/citologia , Fenótipo , Células-Tronco/citologia
9.
J Dermatol Sci ; 88(3): 339-348, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28899582

RESUMO

BACKGROUND: Previous human and animal studies have demonstrated the ability of exogenously administered basic fibroblast growth factor (FGF2) to act as an antifibrotic agent in the skin. Though the activity of FGF2 as an anti-scarring agent is well-established for fibrotic skin wounds, the mechanisms by which FGF2 exerts these actions are not entirely understood. Canonical FGF2 signaling proceeds in part via FGFR/MAPK pathways in human dermal fibroblasts, and FGF2 has been described to prevent or reverse the fibroblast-to-myofibroblast transition, which is driven by TGFß signaling and understood to be an important step in the formation of a fibrotic scar in vivo. Thus, we set out to investigate the antagonistic effects of FGF2 on TGFß signaling as well as the broader effects of MAPK inhibition on the TGFß-mediated induction of myofibroblast gene expression. OBJECTIVE: To better understand the effects of FGF2 signaling pathways on myofibroblastic gene expression and cell phenotypes. METHODS: Human dermal fibroblasts were cultured in vitro in the presence of FGF2, TGFß, and/or MAPK inhibitors, and the effects of these agents were investigated by molecular biology techniques including qRT-PCR, immunofluorescence, Western blot, and flow cytometry. RESULTS: FGF2 inhibited TGFß-mediated fibroblast activation, resulting in more rapidly proliferating, spindle-shaped cells, compared to the more slowly proliferating, flatter TGFß-treated cells. Treatment with FGF2 also attenuated TGFß-mediated increase in expression of myofibroblast markers smooth muscle α-actin, calponin, transgelin, connective tissue growth factor, ED-A fibronectin, and collagen I. FGF2-mediated antagonism of the TGFß-mediated fibroblast-to-myofibroblast transition was reversed by small molecule inhibition of ERK or JNK, and it was potentiated by inhibition of p38. MAPK inhibition was demonstrated to have qualitatively similar effects even in the absence of exogenous FGF2, and small molecule inhibition of p38 MAPK was sufficient to attenuate TGFß-mediated fibroblast activation. CONCLUSIONS: Inhibition of select MAPK signaling pathways can reverse or potentiate anti-fibrotic FGF2 effects on human dermal fibroblasts, as well as exert their effects independently of exogenous FGF2 supplementation.


Assuntos
Cicatriz/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Pele/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cicatriz/patologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento Transformadores beta , Pele/citologia , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Cicatrização/fisiologia
10.
Oncol Lett ; 13(3): 1983-1989, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28454353

RESUMO

Recent emphasis has been placed on the role of epigenetic regulators and epigenetic marks as biomarkers for cancer diagnosis and prognosis, and as therapeutic targets for treatment. One such class of regulators is the protein arginine methyltransferase (PRMT) family. The present study examined available curated data regarding the expression and alteration of one of the least studied PRMT family members, PRMT8, in various types of cancer and cancer cell lines. Publicly available cancer data on PRMT8 expression were examined using the Human Protein Atlas and the Kaplan-Meier Plotter, and reverse transcription-polymerase chain reaction was used to screen a selection of human cell lines for variant-specific PRMT8 expression. High levels of PRMT8 expression in breast, ovarian and cervical cancer was observed. Additionally, in patients with breast and ovarian cancer, high PRMT8 expression was correlated with increased patient survival, whereas in gastric cancer, high PRMT8 expression was correlated with decreased patient survival. The present study also investigated the expression of PRMT8 variant 2, a novel transcript variant recently identified in our laboratory, in various cancer cell lines. Variant-specific expression of PRMT8 in numerous distinct cancer cell lines derived from different tissues, including the expression of the novel PRMT8 variant 2 in U87MG glioblastoma cells was demonstrated. The present study proposes the possibility of PRMT8 as a cancer biomarker, based on the high level of PRMT8 expression in various types of cancer, particularly in tissues that would not normally be expected to express PRMT8, and on the correlation of PRMT8 and patient lifespan in several cancer types. Variant-specific expression of PRMT8 in diverse cancer cell lines suggests the possibility of alternate PRMT8 isoforms to have diverse effects on cancer cell phenotypes.

11.
Stem Cell Res ; 21: 106-116, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28433654

RESUMO

Basic fibroblast growth factor (FGF2) is a highly pleiotropic member of a large family of growth factors with a broad range of activities, including mitogenesis and angiogenesis (Ornitz et al., 1996; Zhang et al., 2006), and it is known to be essential for maintenance of balance between survival, proliferation, and self-renewal in human pluripotent stem cells (Eiselleova et al., 2009; Zoumaro-Djayoon et al., 2011). A single FGF2 transcript can be translated into five FGF2 protein isoforms, an 18kDa low molecular weight (LMW) isoform and four larger high molecular weight (HMW) isoforms (Arese et al., 1999; Arnaud et al., 1999). As they are not generally secreted, high molecular weight (HMW) FGF2 isoforms have predominantly been investigated intracellularly; only a very limited number of studies have investigated their activity as extracellular factors. Here we report over-expression, isolation, and biological activity of all recombinant human FGF2 isoforms. We show that HMW FGF2 isoforms can support self-renewal of human embryonic stem cells (hESCs) in vitro. Exogenous supplementation with HMW FGF2 isoforms also activates the canonical FGFR/MAPK pathway and induces mitogenic activity in a manner similar to that of the 18kDa FGF2 isoform. Though all HMW isoforms, when supplemented exogenously, are able to recapitulate LMW FGF2 activity to some degree, it appears that certain isoforms tend to do so more poorly, demonstrating a lesser functional response by several measures. A better understanding of isoform-specific FGF2 effects will lead to a better understanding of developmental and pathological FGF2 signaling.


Assuntos
Autorrenovação Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Derme/citologia , Fator 2 de Crescimento de Fibroblastos/isolamento & purificação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Camundongos , Mitógenos/farmacologia , Peso Molecular , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo
12.
Biomaterials ; 125: 13-22, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28222326

RESUMO

Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass.


Assuntos
Perfusão/métodos , Folhas de Planta/química , Feixe Vascular de Plantas/química , Células-Tronco/citologia , Células-Tronco/fisiologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Técnicas de Cultura Celular por Lotes/instrumentação , Sistema Livre de Células/química , Células Cultivadas , Desenho de Equipamento , Matriz Extracelular/química , Humanos , Petroselinum/química , Spinacia oleracea/química , Engenharia Tecidual/métodos
13.
Acta Biomater ; 52: 9-20, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28017866

RESUMO

Wound infections, particularly of chronic wounds, pose a substantial challenge for designing antimicrobial dressings that are both effective against pathogens, and do not interfere with wound healing. Due to their broad-spectrum antimicrobial and immunomodulatory activities, naturally-occurring antimicrobial peptides (AMPs) are promising alternative treatments. However, their cytotoxicity at high concentrations and poor stability hinders their clinical use. To mitigate these undesirable properties, we investigated the effects of tethering human AMP cathelicidin LL37 to collagen, one of the main extracellular matrix proteins in wound sites, secreted by fibroblasts, and in commercially-available wound dressings. The active domain of human AMP cathelicidin, LL37, and two chimeric peptides containing LL37 fused to collagen binding domains (derived from collagenase - cCBD-LL37 or fibronectin - fCBD-LL37) were synthesized and adsorbed to PURACOL® type I collagen scaffolds. After 14days, 73%, 81% and 99% of LL37, cCBD-LL37 and fCBD-LL37, respectively, was retained on the scaffolds and demonstrated undiminished antimicrobial activity when challenged with both Gram-positive and Gram-negative bacterial strains. Loaded scaffolds were not cytotoxic to fibroblasts despite retaining peptides at concentrations 24 times higher than the reported cytotoxic concentrations in solution. These findings indicate that biopolymer-tethered AMPs may represent a viable alternative for preventing and treating wound infection while also supporting tissue repair. STATEMENT OF SIGNIFICANCE: Over 6.5million people annually in the United States suffer chronic wounds; many will become infected with antibiotic-resistant bacteria. Treatments used to prevent and fight infection are toxic and may hinder wound healing. AMPs are broad-spectrum antimicrobials that also promote healing; however, their instability and toxicity are major challenges. To overcome treatment gaps, we functionalized collagen scaffolds with chimeric antimicrobial peptides (AMPs) with collagen binding domains to create antimicrobial and non-cytotoxic scaffolds that may promote healing. This is the first report of CBD-mediated delivery of AMPs onto collagen scaffolds that demonstrates no cytotoxicity toward fibroblasts. This study also suggests that retention of antimicrobial activity is CBD-dependent, which provides foundations for fundamental studies of CBD-AMP mechanisms and clinical explorations.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Bandagens/microbiologia , Catelicidinas/administração & dosagem , Colágeno/química , Preparações de Ação Retardada/administração & dosagem , Fibroblastos/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Antibacterianos/administração & dosagem , Antibacterianos/química , Catelicidinas/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Preparações de Ação Retardada/química , Desenho de Equipamento , Proteínas da Matriz Extracelular/química , Humanos , Fragmentos de Peptídeos/química
14.
Bioessays ; 38 Suppl 1: S33-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27417120

RESUMO

The study of cellular senescence and proliferative lifespan is becoming increasingly important because of the promises of autologous cell therapy, the need for model systems for tissue disease and the implication of senescent cell phenotypes in organismal disease states such as sarcopenia, diabetes and various cancers, among others. Here, we explain the concepts of proliferative cellular lifespan and cellular senescence, and we present factors that have been shown to mediate cellular lifespan positively or negatively. We review much recent literature and present potential molecular mechanisms by which lifespan mediation occurs, drawing from the fields of telomere biology, metabolism, NAD(+) and sirtuin biology, growth factor signaling and oxygen and antioxidants. We conclude that cellular lifespan and senescence are complex concepts that are governed by multiple independent and interdependent pathways, and that greater understanding of these pathways, their interactions and their convergence upon specific cellular phenotypes may lead to viable therapies for tissue regeneration and treatment of age-related pathologies, which are caused by or exacerbated by senescent cells in vivo.


Assuntos
Proliferação de Células , Senescência Celular , Animais , Antioxidantes , Eucariotos/metabolismo , Eucariotos/fisiologia , Humanos , Transdução de Sinais , Telômero
15.
J Cell Biochem ; 117(9): 2056-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26851891

RESUMO

Identification of molecular mechanisms that regulate cellular replicative lifespan is needed to better understand the transition between a normal and a neoplastic cell phenotype. We have previously reported that low oxygen-mediated activity of FGF2 leads to an increase in cellular lifespan and acquisition of regeneration competence in human dermal fibroblasts (iRC cells). Though cells display a more plastic developmental phenotype, they remain non-tumorigenic when injected into SCID mice (Page et al. [2009] Cloning Stem Cells 11:417-426; Page et al. [2011] Eng Part A 17:2629-2640) allowing for investigation of mechanisms that regulate increased cellular lifespan in a non-tumorigenic system. Analysis of chromatin modification enzymes by qRT-PCR revealed a 13.3-fold upregulation of the arginine methyltransferase PRMT8 in iRC cells. Increased protein expression was confirmed in both iRC and human embryonic stem cells-the first demonstration of endogenous human PRMT8 expression outside the brain. Furthermore, iRC cells express a novel PRMT8 mRNA variant. Using siRNA-mediated knockdown we demonstrated that this novel variant was required for proliferation of human dermal fibroblasts (hDFs) and grade IV glioblastomas. PRMT8 upregulation in a non-tumorigenic system may offer a potential diagnostic biomarker and a therapeutic target for cells in pre-cancerous and cancerous states. J. Cell. Biochem. 117: 2056-2066, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Proliferação de Células/fisiologia , Derme/enzimologia , Fibroblastos/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana , Proteína-Arginina N-Metiltransferases , Regulação para Cima/fisiologia , Animais , Linhagem Celular , Fibroblastos/transplante , Xenoenxertos , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Proteína-Arginina N-Metiltransferases/biossíntese , Proteína-Arginina N-Metiltransferases/genética
16.
J Cell Biochem ; 117(4): 1000-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26403263

RESUMO

Deposition of collagen-based extracellular matrix by fibroblasts during wound healing leads to scar formation--a typical outcome of the healing process in soft tissue wounds. The process can, however, be skewed in favor of tissue regeneration by manipulation of wound environment. Low oxygen conditions and supplementation with FGF2 provide extracellular cues that drive wound fibroblasts towards a pro-regenerative phenotype. Under these conditions, fibroblasts dramatically alter expression of many genes among which the most significantly deregulated are extracellular matrix and adhesion molecules. Here we investigate the mechanism of a collagen I binding integrin α11 (ITGA11) deregulation in response to low oxygen-mediated FGF2 effects in dermal fibroblasts. Using RT-PCR, qRT-PCR, Western blotting, and immunocytochemistry, we describe significant down-regulation of ITGA11. Decrease in ITGA11 is associated with its loss from focal adhesions. We show that loss of ITGA11 requires FGF2 induced ERK1/2 activity and in the presence of FGF2, ITGA11 expression cannot be rescued by TGFß1, a potent activator of ITGA11. Our results indicate that FGF2 may be redirecting fibroblasts towards an anti-fibrotic phenotype by overriding TGFß1 mediated ITGA11 expression.


Assuntos
Cicatriz/prevenção & controle , Fatores de Crescimento de Fibroblastos/farmacologia , Fibroblastos/efeitos dos fármacos , Cadeias alfa de Integrinas/genética , Reepitelização/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Hipóxia Celular , Cicatriz/genética , Cicatriz/metabolismo , Cicatriz/patologia , Metilação de DNA/efeitos dos fármacos , Derme/efeitos dos fármacos , Derme/lesões , Derme/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Adesões Focais/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Cadeias alfa de Integrinas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxigênio/farmacologia , Cultura Primária de Células , Reepitelização/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
17.
PLoS One ; 9(2): e89546, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586860

RESUMO

The POU5F1 gene codes for the OCT4 transcription factor, which is one of the key regulators of pluripotency. Its transcription, alternative splicing, and alternative translation leading to the synthesis of the active, nuclear localized OCT4A has been described in detail. Much less, however, is known about actively transcribed OCT4 pseudogenes, several of which display high homology to OCT4A and can be expressed and translated into proteins. Using RT-PCR followed by pseudogene-specific restriction digestion, cloning, and sequencing we discriminate between OCT4A and transcripts for pseudogenes 1, 3 and 4. We show that expression of OCT4 and its pseudogenes follows a developmentally-regulated pattern in differentiating hESCs, indicating a tight regulatory relationship between them. We further demonstrate that differentiated human cells from a variety of tissues express exclusively pseudogenes. Expression of OCT4A can, however be triggered in adult differentiated cells by oxygen and FGF2-dependent mechanisms.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Pseudogenes/fisiologia , Adulto , Western Blotting , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Oxigênio/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Cell Reprogram ; 16(1): 18-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24405062

RESUMO

Direct reprogramming of a differentiated somatic cell into a developmentally more plastic cell would offer an alternative to applications in regenerative medicine that currently depend on either embryonic stem cells (ESCs), adult stem cells, or induced pluripotent stem cells (iPSCs). Here we report the potential of select Xenopus laevis egg extract fractions, in combination with exogenous fibroblast growth factor-2 (FGF2), to affect life span, morphology, gene expression, protein translation, and cellular localization of OCT4 and NANOG transcription factors, and the developmental potential of human dermal fibroblasts in vitro. A gradual change in morphology is accompanied by translation of embryonic transcription factors and their nuclear localization and a life span exceeding 60 population doublings. Cells acquire the ability to follow adipogenic, neuronal, and osteogenic differentiation under appropriate induction conditions in vitro. Analysis of active extract fractions reveals that Xenopus egg protein and RNAs as well as exogenously supplemented FGF2 are required and sufficient for induction and maintenance of this phenotypic change. Factors so far identified in the active fractions include FGF2 itself, transforming growth factor-ß, maskin, and nucleoplasmin. Identification of critical factors needed for reprogramming may allow for nonviral, chemically defined derivation of human-induced multipotent cells that can be maintained by exogenous FGF2.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Misturas Complexas/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/metabolismo , Células-Tronco Multipotentes/metabolismo , Oócitos/química , Adulto , Animais , Linhagem Celular , Misturas Complexas/química , Feminino , Fibroblastos/citologia , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Células-Tronco Multipotentes/citologia , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Xenopus laevis
20.
BMC Genomics ; 14: 656, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24066673

RESUMO

BACKGROUND: Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury - by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. RESULTS: We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion molecules, matrix remodelling, cytoskeleton, and cytokines were determined to be affected by FGF2 treatment. CONCLUSIONS: Transcriptome analysis comparing control adult human fibroblasts with FGF2-treated fibroblasts identified functional groups of genes that reflect transcriptional changes potentially contributing to their regeneration competence. This comparative transcriptome analysis should contribute new insights into genes that characterize cells with greater regenerative potential.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Regeneração/genética , Transcriptoma/genética , Adulto , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Receptores de Citocinas/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...