Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39269031

RESUMO

Penium margaritaceum, a unicellular zygnematophyte (Streptophyta), was employed to elucidate changes in cell expansion when cells were challenged with the fungal pectinolytic enzyme, pectate lyase, and/or the microtubule disrupting agent, amiprophos-methyl (APM). Microtubule disruption by APM results in significant swelling at expansion zones. These swollen zones provide an easy marker for the location of expansion zones, particularly in cells with altered cell wall pectin. Short term treatment with pectate lyase shows pectin degradation primarily at the isthmus expansion zone and two satellite bands, corresponding with the location of future expansion in daughter cells. When the homogalacturonan lattice of the cell wall is removed by treatment with pectate lyase during long treatments, cell division is maintained, but daughter cell products are considerably smaller. Treatment of cells with a mixture of both pectate lyase and APM results in a distinct phenotype, consisting of "dumbbell"-shaped cells, as APM-induced swelling occurs at the novel expansion centers exposed by pectate lyase treatment. These cells also possess other curious alterations including an extensive, chloroplast-free cytoplasmic zone at the center of the cell, a septum containing ß-glycan, arabinogalactan and homogalacturonan epitopes, unique stacks of ER, displaced Golgi bodies and an extensive network of vacuoles. These results provide insight into the importance of cell wall integrity in defining the location of cell growth and division in P. margaritaceum. Understanding these processes in a unicellular zygnematophyte may provide insights into steps involved in the evolution of land plants.

2.
Protoplasma ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967680

RESUMO

Phenotypic plasticity allows a plant cell to alter its structure and function in response to external pressure. This adaptive phenomenon has also been important in the evolution of plants including the emergence of land plants from a streptophyte alga. Penium margaritaceum is a unicellular zygnematophyte (i.e., the group of streptophyte algae that is sister to land plants) that was employed in order to study phenotypic plasticity with a focus on the role of subcellular expansion centers and the cell wall in this process. Live cell fluorescence labeling, immunofluorescence labeling, transmission electron microscopy, and scanning electron microscopy showed significant subcellular changes and alterations to the cell wall. When treated with the actin-perturbing agent, cytochalasin E, cytokinesis is arrested and cells are transformed into pseudo-filaments made of up to eight or more cellular units. When treated with the cyclin-dependent kinase (CDK) inhibitor, roscovitine, cells converted to a unique phenotype with a narrow isthmus zone.

3.
Plant Physiol ; 194(1): 15-32, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399237

RESUMO

Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.


Assuntos
Clorófitas , Clorófitas/genética , Clorófitas/metabolismo , Polissacarídeos/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Plantas/genética , Plantas/metabolismo , Glicoproteínas/metabolismo
4.
Ann Bot ; 131(6): 967-983, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37076269

RESUMO

BACKGROUND AND AIMS: Endosidins are a group of low-molecular-weight compounds, first identified by 'chemical biology' screening assays, that have been used to target specific components of the endomembrane system. In this study, we employed multiple microscopy-based screening techniques to elucidate the effects of endosidin 5 (ES5) on the Golgi apparatus and the secretion of extracellular matrix (ECM) components in Penium margaritaceum. These effects were compared with those caused by treatments with brefeldin A and concanamycin A. Penium margaritaceum's extensive Golgi apparatus and endomembrane system make it an outstanding model organism for screening changes to the endomembrane system. Here we detail changes to the Golgi apparatus and secretion of ECM material caused by ES5. METHODS: Changes to extracellular polymeric substance (EPS) secretion and cell wall expansion were screened using fluorescence microscopy. Confocal laser scanning microscopy and transmission electron microscopy were used to assess changes to the Golgi apparatus, the cell wall and the vesicular network. Electron tomography was also performed to detail the changes to the Golgi apparatus. KEY RESULTS: While other endosidins were able to impact EPS secretion and cell wall expansion, only ES5 completely inhibited EPS secretion and cell wall expansion over 24 h. Short treatments of ES5 resulted in displacement of the Golgi bodies from their typical linear alignment. The number of cisternae decreased per Golgi stack and trans face cisternae in-curled to form distinct elongate circular profiles. Longer treatment resulted in a transformation of the Golgi body to an irregular aggregate of cisternae. These alterations could be reversed by removal of ES5 and returning cells to culture. CONCLUSIONS: ES5 alters secretion of ECM material in Penium by affecting the Golgi apparatus and does so in a markedly different way from other endomembrane inhibitors such as brefeldin A and concanamycin A.


Assuntos
Carofíceas , Brefeldina A/farmacologia , Matriz Extracelular de Substâncias Poliméricas , Complexo de Golgi , Matriz Extracelular
5.
Plant Physiol ; 190(3): 1588-1608, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35993883

RESUMO

Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.


Assuntos
Carofíceas , Clorófitas , Estreptófitas , Filogenia , Plantas/genética , Evolução Biológica
6.
Commun Biol ; 4(1): 754, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140625

RESUMO

The charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.


Assuntos
Parede Celular/química , Clorofíceas/metabolismo , Embriófitas/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Zygnematales/metabolismo , Evolução Biológica , Clorofíceas/genética , Genoma de Planta/genética , Glicosilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zygnematales/genética
7.
Protoplasma ; 258(6): 1231-1249, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33928433

RESUMO

Penium margaritaceum is a unicellular zygnematophyte (basal Streptophyteor Charophyte) that has been used as a model organism for the study of cell walls of Streptophytes and for elucidating organismal adaptations that were key in the evolution of land plants.. When Penium is incubated in sorbitol-enhance medium, i.e., hyperosmotic medium, 1000-1500 Hechtian strands form within minutes and connect the plasma membrane to the cell wall. As cells acclimate to this osmotic stress over time, further significant changes occur at the cell wall and plasma membrane domains. The homogalacturonan lattice of the outer cell wall layer is significantly reduced and is accompanied by the formation of a highly elongate, "filamentous" phenotype. Distinct peripheral thickenings appear between the CW and plasma membrane and contain membranous components and a branched granular matrix. Monoclonal antibody labeling of these thickenings indicates the presence of rhamnogalacturonan-I epitopes. Acclimatization also results in the proliferation of the cell's vacuolar networks and macroautophagy. Penium's ability to acclimatize to osmotic stress offers insight into the transition of ancient zygnematophytes from an aquatic to terrestrial existence.


Assuntos
Carofíceas , Clorófitas , Membrana Celular , Parede Celular , Pressão Osmótica
8.
J Cell Sci ; 133(19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32895244

RESUMO

Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a ß-1,3 glucan, accumulates at later stages of cell plate development, presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, because it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, Penium margaritaceum Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition of callose deposition by endosidin 7 resulted in cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum The evolutionary implications of cytokinetic callose in this unicellular zygnematopycean alga is discussed in the context of the conquest of land by plants.This article has an associated First Person interview with the first author of the paper.


Assuntos
Carofíceas , Citocinese , Parede Celular , Glucanos
9.
Front Plant Sci ; 11: 1032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733522

RESUMO

Pectins represent one of the main components of the plant primary cell wall. These polymers have critical roles in cell expansion, cell-cell adhesion and response to biotic stress. We present a comprehensive screening of pectin architecture of the unicellular streptophyte, Penium margaritaceum. Penium possesses a distinct cell wall whose outer layer consists of a lattice of pectin-rich fibers and projections. In this study, cells were exposed to a variety of physical, chemical and enzymatic treatments that directly affect the cell wall, especially the pectin lattice. Correlative analyses of pectin lattice perturbation using field emission scanning electron microscopy, confocal laser scanning microscopy, and transmission electron microscopy demonstrate that pectin lattice microarchitecture is both highly sensitive and malleable.

10.
Methods Mol Biol ; 2149: 111-124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617932

RESUMO

The unicellular freshwater green alga Penium margaritaceum has become a novel and valuable model organism for elucidating cell wall dynamics in plants. We describe a rapid and simple means for isolating protoplasts using commercial enzymes in a mannitol-based buffer. Protoplasts can be cultured and cell wall recovery can be monitored in sequentially diluted mannitol-based medium. We also describe an optimized protocol to prepare highly pure, organelle-free nuclei fractions from protoplasts using sucrose gradients. This technology provides a new and effective tool in Penium biology that can be used for analysis of cell wall polymer deposition, organelle isolation and characterization, and molecular research including genetic transformation and somatic hybridization.


Assuntos
Clorófitas/metabolismo , Modelos Biológicos , Protoplastos/metabolismo , Núcleo Celular/metabolismo , Parede Celular/metabolismo , Células Cultivadas
11.
Methods Mol Biol ; 2149: 315-325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617942

RESUMO

The deposition and modulation of constituent polymers of plant cell walls are profoundly important events during plant development. Identification of specific polymers within assembled walls during morphogenesis and in response to stress conditions represents a major goal of plant cell biologists. Arabidopsis thaliana is a model organism that has become central to research focused on fundamental plant processes including those related to plant wall dynamics. Its fast life cycle and easy access to a variety of mutants and ecotypes of Arabidopsis have stimulated the need for rapid assessment tools to probe its wall organization at the cellular and subcellular levels. We describe two rapid assessment techniques that allow for elucidation of the cell wall polymers of root hairs and high-resolution analysis of surface features of various vegetative organs. Live organism immunolabeling of cell wall polymers employing light microscopy and confocal laser scanning microscopy can be effectively performed using a large microplate-based screening strategy (see Figs. 1 and 2). Rapid cryofixation and imaging of variable pressure scanning electron microscopy also allows for imaging of surface features of all portions of the plant as clearly seen in Fig. 3.


Assuntos
Arabidopsis/metabolismo , Biopolímeros/metabolismo , Parede Celular/química , Plântula/metabolismo , Arabidopsis/ultraestrutura , Parede Celular/ultraestrutura , Glucanos/metabolismo , Raízes de Plantas/metabolismo , Plântula/ultraestrutura
12.
Cell ; 181(5): 1097-1111.e12, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32442406

RESUMO

The evolutionary features and molecular innovations that enabled plants to first colonize land are not well understood. Here, insights are provided through our report of the genome sequence of the unicellular alga Penium margaritaceum, a member of the Zygnematophyceae, the sister lineage to land plants. The genome has a high proportion of repeat sequences that are associated with massive segmental gene duplications, likely facilitating neofunctionalization. Compared with representatives of earlier diverging algal lineages, P. margaritaceum has expanded repertoires of gene families, signaling networks, and adaptive responses that highlight the evolutionary trajectory toward terrestrialization. These encompass a broad range of physiological processes and protective cellular features, such as flavonoid compounds and large families of modifying enzymes involved in cell wall biosynthesis, assembly, and remodeling. Transcriptome profiling further elucidated adaptations, responses, and selective pressures associated with the semi-terrestrial ecosystems of P. margaritaceum, where a simple body plan would be an advantage.


Assuntos
Desmidiales/genética , Desmidiales/metabolismo , Embriófitas/genética , Evolução Biológica , Parede Celular/genética , Parede Celular/metabolismo , Ecossistema , Evolução Molecular , Filogenia , Plantas
13.
Curr Opin Plant Biol ; 55: 11-20, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203682

RESUMO

Cutin and suberin are hydrophobic lipid biopolyester components of the cell walls of specialized plant tissue and cell-types, where they facilitate adaptation to terrestrial habitats. Many steps in their biosynthetic pathways have been characterized, but the basis of their spatial deposition and precursor trafficking is not well understood. Members of the GDSL lipase/esterase family catalyze cutin polymerization, and candidate proteins have been proposed to mediate interactions between cutin or suberin and other wall components. Comparative genomic studies of charophyte algae and early diverging land plants, combined with knowledge of the biosynthesis, trafficking and assembly mechanisms, suggests an origin for the capacity to secrete waxes, as well as aliphatic and phenolic compounds before the first colonization of true terrestrial habitats.


Assuntos
Embriófitas , Lipídeos de Membrana , Parede Celular , Lipídeos
14.
J Exp Bot ; 71(11): 3323-3339, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31974570

RESUMO

The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150-200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.


Assuntos
Carofíceas , Clorófitas , Parede Celular , Matriz Extracelular , Complexo de Golgi , Polissacarídeos
15.
Proc Natl Acad Sci U S A ; 116(42): 21291-21301, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570580

RESUMO

Vacuoles are essential organelles in plants, playing crucial roles, such as cellular material degradation, ion and metabolite storage, and turgor maintenance. Vacuoles receive material via the endocytic, secretory, and autophagic pathways. Membrane fusion is the last step during which prevacuolar compartments (PVCs) and autophagosomes fuse with the vacuole membrane (tonoplast) to deliver cargoes. Protein components of the canonical intracellular fusion machinery that are conserved across organisms, including Arabidopsis thaliana, include complexes, such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), that catalyze membrane fusion, and homotypic fusion and vacuole protein sorting (HOPS), that serve as adaptors which tether cargo vesicles to target membranes for fusion under the regulation of RAB-GTPases. The mechanisms regulating the recruitment and assembly of tethering complexes are not well-understood, especially the role of RABs in this dynamic regulation. Here, we report the identification of the small synthetic molecule Endosidin17 (ES17), which interferes with synthetic, endocytic, and autophagic traffic by impairing the fusion of late endosome compartments with the tonoplast. Multiple independent target identification techniques revealed that ES17 targets the VPS35 subunit of the retromer tethering complex, preventing its normal interaction with the Arabidopsis RAB7 homolog RABG3f. ES17 interference with VPS35-RABG3f interaction prevents the retromer complex to endosome anchoring, resulting in retention of RABG3f. Using multiple approaches, we show that VPS35-RABG3f-GTP interaction is necessary to trigger downstream events like HOPS complex assembly and fusion of late compartments with the tonoplast. Overall, our results support a role for the interaction of RABG3f-VPS35 as a checkpoint in the control of traffic toward the vacuole.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fusão de Membrana/fisiologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico/fisiologia , Proteínas SNARE/metabolismo
16.
Plant Cell ; 31(8): 1879-1898, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175171

RESUMO

The dynamic trans-Golgi network/early endosome (TGN/EE) facilitates cargo sorting and trafficking and plays a vital role in plant development and environmental response. Transport protein particles (TRAPPs) are multi-protein complexes acting as guanine nucleotide exchange factors and possibly as tethers, regulating intracellular trafficking. TRAPPs are essential in all eukaryotic cells and are implicated in a number of human diseases. It has been proposed that they also play crucial roles in plants; however, our current knowledge about the structure and function of plant TRAPPs is very limited. Here, we identified and characterized AtTRAPPC11/RESPONSE TO OLIGOGALACTURONIDE2 (AtTRAPPC11/ROG2), a TGN/EE-associated, evolutionarily conserved TRAPP protein in Arabidopsis (Arabidopsis thaliana). AtTRAPPC11/ROG2 regulates TGN integrity, as evidenced by altered TGN/EE association of several residents, including SYNTAXIN OF PLANTS61, and altered vesicle morphology in attrappc11/rog2 mutants. Furthermore, endocytic traffic and brefeldin A body formation are perturbed in attrappc11/rog2, suggesting a role for AtTRAPPC11/ROG2 in regulation of endosomal function. Proteomic analysis showed that AtTRAPPC11/ROG2 defines a hitherto uncharacterized TRAPPIII complex in plants. In addition, attrappc11/rog2 mutants are hypersensitive to salinity, indicating an undescribed role of TRAPPs in stress responses. Overall, our study illustrates the plasticity of the endomembrane system through TRAPP protein functions and opens new avenues to explore this dynamic network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteômica/métodos , Rede trans-Golgi/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endossomos/metabolismo , Transporte Proteico , Rede trans-Golgi/genética
17.
Front Plant Sci ; 10: 447, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031785

RESUMO

Charophytes represent the group of green algae whose ancestors invaded land and ultimately gave rise to land plants 450 million years ago. While Zygnematophyceae are believed to be the direct sister lineage to embryophytes, different members of this group (Penium, Spirogyra, Zygnema) and the advanced thallus forming Coleochaete as well as the sarcinoid basal streptophyte Chlorokybus were investigated concerning their vegetative extracellular matrix (ECM) properties. Many taxa exhibit adhesion phenomena that are critical for affixing to a substrate or keeping cells together in a thallus, however, there is a great variety in possible reactions to e.g., wounding. In this study an analysis of adhesion mechanisms revealed that arabinogalactan proteins (AGPs) are most likely key adhesion molecules. Through use of monoclonal antibodies (JIM13) or the Yariv reagent, AGPs were located in cell surface sheaths and cell walls that were parts of the adhesion focal zones on substrates including wound induced rhizoid formation. JIM5, detecting highly methyl-esterfied homoglacturonan and JIM8, an antibody detecting AGP glycan and LM6 detecting arabinans were also tested and a colocalization was found in several examples (e.g., Zygnema) suggesting an interplay between these components. AGPs have been described in this study to perform both, cell to cell adhesion in algae forming thalli and cell to surface adhesion in the filamentous forms. These findings enable a broader evolutionary understanding of the function of AGPs in charophyte green algae.

18.
Plant Cell ; 31(3): 627-644, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760563

RESUMO

The plant endomembrane system facilitates the transport of polysaccharides, associated enzymes, and glycoproteins through its dynamic pathways. Although enzymes involved in cell wall biosynthesis have been identified, little is known about the endomembrane-based transport of glycan components. This is partially attributed to technical challenges in biochemically determining polysaccharide cargo in specific vesicles. Here, we introduce a hybrid approach addressing this limitation. By combining vesicle isolation with a large-scale carbohydrate antibody arraying technique, we charted an initial large-scale map describing the glycome profile of the SYNTAXIN OF PLANTS61 (SYP61) trans-Golgi network compartment in Arabidopsis (Arabidopsis thaliana). A library of antibodies recognizing specific noncellulosic carbohydrate epitopes allowed us to identify a range of diverse glycans, including pectins, xyloglucans (XyGs), and arabinogalactan proteins in isolated vesicles. Changes in XyG- and pectin-specific epitopes in the cell wall of an Arabidopsis SYP61 mutant corroborate our findings. Our data provide evidence that SYP61 vesicles are involved in the transport and deposition of structural polysaccharides and glycoproteins. Adaptation of our methodology can enable studies characterizing the glycome profiles of various vesicle populations in plant and animal systems and their respective roles in glycan transport defined by subcellular markers, developmental stages, or environmental stimuli.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicômica , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Carboidratos/imunologia , Parede Celular/metabolismo , Epitopos/imunologia , Mutação , Transporte Proteico , Proteínas Qa-SNARE/genética , Rede trans-Golgi/metabolismo
19.
Plant J ; 94(4): 595-611, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29495075

RESUMO

The large retromer complex participates in diverse endosomal trafficking pathways and is essential for plant developmental programs, including cell polarity, programmed cell death and shoot gravitropism in Arabidopsis. Here we demonstrate that an evolutionarily conserved VPS26 protein (VPS26C; At1G48550) functions in a complex with VPS35A and VPS29 necessary for root hair growth in Arabidopsis. Bimolecular fluorescence complementation showed that VPS26C forms a complex with VPS35A in the presence of VPS29, and this is supported by genetic studies showing that vps29 and vps35a mutants exhibit altered root hair growth. Genetic analysis also demonstrated an interaction between a VPS26C trafficking pathway and one involving the SNARE VTI13. Phylogenetic analysis indicates that VPS26C, with the notable exception of grasses, has been maintained in the genomes of most major plant clades since its evolution at the base of eukaryotes. To test the model that VPS26C orthologs in animal and plant species share a conserved function, we generated transgenic lines expressing GFP fused with the VPS26C human ortholog (HsDSCR3) in a vps26c background. These studies illustrate that GFP-HsDSCR3 is able to complement the vps26c root hair phenotype in Arabidopsis, indicating a deep conservation of cellular function for this large retromer subunit across plant and animal kingdoms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Gravitropismo/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Endossomos/fisiologia , Genes Reporter , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana , Complexos Multiproteicos , Fenótipo , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Proteínas/genética , Proteínas Recombinantes de Fusão , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
20.
Proteomes ; 6(2)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561781

RESUMO

The secretome can be defined as the population of proteins that are secreted into the extracellular environment. Many proteins that are secreted by eukaryotes are N-glycosylated. However, there are striking differences in the diversity and conservation of N-glycosylation patterns between taxa. For example, the secretome and N-glycosylation structures differ between land plants and chlorophyte green algae, but it is not clear when this divergence took place during plant evolution. A potentially valuable system to study this issue is provided by the charophycean green algae (CGA), which is the immediate ancestors of land plants. In this study, we used lectin affinity chromatography (LAC) coupled with mass spectrometry to characterize the secretome including secreted N-glycoproteins of Penium margaritaceum, which is a member of the CGA. The identified secreted proteins and N-glycans were compared to those known from the chlorophyte green alga Chlamydomonas reinhardtii and the model land plant, Arabidopsis thaliana, to establish their evolutionary context. Our approach allowed the identification of cell wall proteins and proteins modified with N-glycans that are identical to those of embryophytes, which suggests that the P. margaritaceum secretome is more closely related to those of land plants than to those of chlorophytes. The results of this study support the hypothesis that many of the proteins associated with plant cell wall modification as well as other extracellular processes evolved prior to the colonization of terrestrial habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA