Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 18(10): 1192-1195, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594030

RESUMO

DeepImageJ is a user-friendly solution that enables the generic use of pre-trained deep learning models for biomedical image analysis in ImageJ. The deepImageJ environment gives access to the largest bioimage repository of pre-trained deep learning models (BioImage Model Zoo). Hence, nonexperts can easily perform common image processing tasks in life-science research with deep learning-based tools including pixel and object classification, instance segmentation, denoising or virtual staining. DeepImageJ is compatible with existing state of the art solutions and it is equipped with utility tools for developers to include new models. Very recently, several training frameworks have adopted the deepImageJ format to deploy their work in one of the most used softwares in the field (ImageJ). Beyond its direct use, we expect deepImageJ to contribute to the broader dissemination and reuse of deep learning models in life sciences applications and bioimage informatics.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Software , Disciplinas das Ciências Biológicas , Redes Neurais de Computação
2.
Artigo em Inglês | MEDLINE | ID: mdl-32248108

RESUMO

Single-particle cryo-electron microscopy (cryo-EM) reconstructs the three-dimensional (3D) structure of biomolecules from a large set of 2D projection images with random and unknown orientations. A crucial step in the single-particle cryo-EM pipeline is 3D refinement, which resolves a highresolution 3D structure from an initial approximate volume by refining the estimation of the orientation of each projection. In this work, we propose a new approach that refines the projection angles on the continuum. We formulate the optimization problem over the density map and the orientations jointly. The density map is updated using the efficient alternating-direction method of multipliers, while the orientations are updated through a semicoordinate- wise gradient descent for which we provide an explicit derivation of the gradient. Our method eliminates the requirement for a fine discretization of the orientation space and does away with the classical but computationally expensive templatematching step. Numerical results demonstrate the feasibility and performance of our approach compared to several baselines.

3.
J Struct Biol ; 204(3): 543-554, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30261282

RESUMO

We present a multiscale reconstruction framework for single-particle analysis (SPA). The representation of three-dimensional (3D) objects with scaled basis functions permits the reconstruction of volumes at any desired scale in the real-space. This multiscale approach generates interesting opportunities in SPA for the stabilization of the initial volume problem or the 3D iterative refinement procedure. In particular, we show that reconstructions performed at coarse scale are more robust to angular errors and permit gains in computational speed. A key component of the proposed iterative scheme is its fast implementation. The costly step of reconstruction, which was previously hindering the use of advanced iterative methods in SPA, is formulated as a discrete convolution with a cost that does not depend on the number of projection directions. The inclusion of the contrast transfer function inside the imaging matrix is also done at no extra computational cost. By permitting full 3D regularization, the framework is by itself a robust alternative to direct methods for performing reconstruction in adverse imaging conditions (e.g., heavy noise, large angular misassignments, low number of projections). We present reconstructions obtained at different scales from a dataset of the 2015/2016 EMDataBank Map Challenge. The algorithm has been implemented in the Scipion package.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tamanho da Partícula , Imagens de Fantasmas , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura
4.
Ultramicroscopy ; 179: 47-56, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28411510

RESUMO

A central challenge in scanning transmission electron microscopy (STEM) is to reduce the electron radiation dosage required for accurate imaging of 3D biological nano-structures. Methods that permit tomographic reconstruction from a reduced number of STEM acquisitions without introducing significant degradation in the final volume are thus of particular importance. In random-beam STEM (RB-STEM), the projection measurements are acquired by randomly scanning a subset of pixels at every tilt view. In this work, we present a tailored RB-STEM acquisition-reconstruction framework that fully exploits the compressed sensing principles. We first demonstrate that RB-STEM acquisition fulfills the "incoherence" condition when the image is expressed in terms of wavelets. We then propose a regularized tomographic reconstruction framework to recover volumes from RB-STEM measurements. We demonstrate through simulations on synthetic and real projection measurements that the proposed framework reconstructs high-quality volumes from strongly downsampled RB-STEM data and outperforms existing techniques at doing so. This application of compressed sensing principles to STEM paves the way for a practical implementation of RB-STEM and opens new perspectives for high-quality reconstructions in STEM tomography.

5.
Methods ; 115: 28-41, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28057586

RESUMO

Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The purpose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration and parametrization, while potentially facing demanding computational tasks. To make deconvolution more accessible, we have developed a practical platform for deconvolution microscopy called DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D microscopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage of the release of DeconvolutionLab2 to provide a complete description of the software package and its built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov-Miller, Richardson-Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D microscopy images using simulated datasets and real experimental images. We distinguish the algorithms in terms of image quality, performance, usability and computational requirements. Our presentation is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand Challenge on deconvolution microscopy that was recently organized.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Software , Algoritmos , Animais , Células Eucarióticas/ultraestrutura , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...