Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 10(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34362006

RESUMO

Mitochondrial diseases (MDs) are a large group of genetically determined multisystem disorders, characterized by extreme phenotypic heterogeneity, attributable in part to the dual genomic control (nuclear and mitochondrial DNA) of the mitochondrial proteome. Advances in next-generation sequencing technologies over the past two decades have presented clinicians with a challenge: to select the candidate disease-causing variants among the huge number of data provided. Unfortunately, the clinical tools available to support genetic interpretations still lack specificity and sensitivity. For this reason, the diagnosis of MDs continues to be difficult, with the new "genotype first" approach still failing to diagnose a large group of patients. With the aim of investigating possible relationships between clinical and/or biochemical phenotypes and definitive molecular diagnoses, we performed a retrospective multicenter study of 111 pediatric patients with clinical suspicion of MD. In this cohort, the strongest predictor of a molecular (in particular an mtDNA-related) diagnosis of MD was neuroimaging evidence of basal ganglia (BG) involvement. Regression analysis confirmed that normal BG imaging predicted negative genetic studies for MD. Psychomotor regression was confirmed as an independent predictor of a definitive diagnosis of MD. The findings of this study corroborate previous data supporting a role for neuroimaging in the diagnostic approach to MDs and reinforce the idea that mtDNA sequencing should be considered for first-line testing, at least in specific groups of children.

2.
Acta Myol ; 39(4): 218-221, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33458577

RESUMO

Two patients with a paucisymptomatic hyperckemia underwent a skeletal muscle biopsy and massive gene panel to investigate mutations associated with inherited muscle disorders. In the SGCA gene, sequence analyses revealed a homozygous c.850C > T/p.Arg284Cys in patient 1 and two heterozygous variants (c.739G > A/p.Val247Met and c.850C > T/p.Arg284Cys) in patient 2. Combination of histology and immunofluorence studies showed minimal changes for muscular proteins including the α-sarcoglycan. These two cases highlight the advantages of next-generation sequencing in the differential diagnosis of mild myopathic conditions before considering the more invasive muscle biopsy in sarcoglycanopathies.


Assuntos
Creatina Quinase/sangue , Mialgia/etiologia , Sarcoglicanopatias/sangue , Sarcoglicanopatias/diagnóstico , Adulto , Feminino , Humanos , Masculino , Mialgia/sangue , Mialgia/patologia , Sarcoglicanopatias/complicações
3.
Neurol Genet ; 5(5): e352, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31517061

RESUMO

OBJECTIVE: Next-generation sequencing (NGS) was applied in molecularly undiagnosed asymptomatic or paucisymptomatic hyperCKemia to investigate whether this technique might allow detection of the genetic basis of the condition. METHODS: Sixty-six patients with undiagnosed asymptomatic or paucisymptomatic hyperCKemia, referred to tertiary neuromuscular centers over an approximately 2-year period, were analyzed using a customized, targeted sequencing panel able to investigate the coding exons and flanking intronic regions of 78 genes associated with limb-girdle muscular dystrophies, rhabdomyolysis, and metabolic and distal myopathies. RESULTS: A molecular diagnosis was reached in 33 cases, corresponding to a positive diagnostic yield of 50%. Variants of unknown significance were found in 17 patients (26%), whereas 16 cases (24%) remained molecularly undefined. The major features of the diagnosed cases were mild proximal muscle weakness (found in 27%) and myalgia (in 24%). Fourteen patients with a molecular diagnosis and mild myopathic features on muscle biopsy remained asymptomatic at a 24-month follow-up. CONCLUSIONS: This study of patients with undiagnosed hyperCKemia, highlighting the advantages of NGS used as a first-tier diagnostic approach in genetically heterogeneous conditions, illustrates the ongoing evolution of molecular diagnosis in the field of clinical neurology. Isolated hyperCKemia can be the sole feature alerting to a progressive muscular disorder requiring careful surveillance.

4.
Ann Neurol ; 86(2): 293-303, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125140

RESUMO

OBJECTIVE: Thymidine kinase 2, encoded by the nuclear gene TK2, is required for mitochondrial DNA maintenance. Autosomal recessive TK2 mutations cause depletion and multiple deletions of mtDNA that manifest predominantly as a myopathy usually beginning in childhood and progressing relentlessly. We investigated the safety and efficacy of deoxynucleoside monophosphate and deoxynucleoside therapies. METHODS: We administered deoxynucleoside monophosphates and deoxynucleoside to 16 TK2-deficient patients under a compassionate use program. RESULTS: In 5 patients with early onset and severe disease, survival and motor functions were better than historically untreated patients. In 11 childhood and adult onset patients, clinical measures stabilized or improved. Three of 8 patients who were nonambulatory at baseline gained the ability to walk on therapy; 4 of 5 patients who required enteric nutrition were able to discontinue feeding tube use; and 1 of 9 patients who required mechanical ventilation became able to breathe independently. In motor functional scales, improvements were observed in the 6-minute walk test performance in 7 of 8 subjects, Egen Klassifikation in 2 of 3, and North Star Ambulatory Assessment in all 5 tested. Baseline elevated serum growth differentiation factor 15 levels decreased with treatment in all 7 patients tested. A side effect observed in 8 of the 16 patients was dose-dependent diarrhea, which did not require withdrawal of treatment. Among 12 other TK2 patients treated with deoxynucleoside, 2 adults developed elevated liver enzymes that normalized following discontinuation of therapy. INTERPRETATION: This open-label study indicates favorable side effect profiles and clinical efficacy of deoxynucleoside monophosphate and deoxynucleoside therapies for TK2 deficiency. ANN NEUROL 2019;86:293-303.


Assuntos
Ensaios de Uso Compassivo/métodos , Desoxirribonucleosídeos/uso terapêutico , Doenças Musculares/tratamento farmacológico , Doenças Musculares/enzimologia , Timidina Quinase/deficiência , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Teste de Caminhada/métodos
5.
Hum Mol Genet ; 24(11): 3248-56, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25736212

RESUMO

We describe the case of a woman in whom combination of a mitochondrial (MT-CYB) and a nuclear (SDHB) mutation was associated with clinical and metabolic features suggestive of a mitochondrial disorder. The mutations impaired overall energy metabolism in the patient's muscle and fibroblasts and increased cellular susceptibility to oxidative stress. To clarify the contribution of each mutation to the phenotype, mutant yeast strains were generated. A significant defect in strains carrying the Sdh2 mutation, either alone or in combination with the cytb variant, was observed. Our data suggest that the SDHB mutation was causative of the mitochondrial disorder in our patient with a possible cumulative contribution of the MT-CYB variant. To our knowledge, this is the first association of bi-genomic variants in the mtDNA and in a nuclear gene encoding a subunit of complex II.


Assuntos
Encefalomiopatias Mitocondriais/diagnóstico , Trifosfato de Adenosina/metabolismo , Adulto , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Diagnóstico Diferencial , Feminino , Humanos , Encefalomiopatias Mitocondriais/genética , Técnicas de Diagnóstico Molecular , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Polimorfismo de Fragmento de Restrição , Saccharomyces cerevisiae
6.
Am J Hum Genet ; 93(5): 906-14, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24119684

RESUMO

We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.


Assuntos
Anemia Macrocítica/genética , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Adolescente , Animais , Criança , Eritropoese/genética , Exoma , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas Mitocondriais/genética , Mutação , Peixe-Zebra/genética
7.
J Biol Chem ; 277(6): 4128-33, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11733540

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive human disease due to mutations in the thymidine phosphorylase (TP) gene. TP enzyme catalyzes the reversible phosphorolysis of thymidine to thymine and 2-deoxy-D-ribose 1-phosphate. We present evidence that thymidine metabolism is altered in MNGIE. TP activities in buffy coats were reduced drastically in all 27 MNGIE patients compared with 19 controls. All MNGIE patients had much higher plasma levels of thymidine than normal individuals and asymptomatic TP mutation carriers. In two patients, the renal clearance of thymidine was approximately 20% that of creatinine, and because hemodialysis demonstrated that thymidine is ultrafiltratable, most of the filtered thymidine is likely to be reabsorbed by the kidney. In vitro, fibroblasts from controls catabolized thymidine in medium; by contrast, MNGIE fibroblasts released thymidine. In MNGIE, severe impairment of TP enzyme activity leads to increased plasma thymidine. In patients who are suspected of having MNGIE, determination of TP activity in buffy coats and thymidine levels in plasma are diagnostic. We hypothesize that excess thymidine alters mitochondrial nucleoside and nucleotide pools leading to impaired mitochondrial DNA replication, repair, or both. Therapies to reduce thymidine levels may be beneficial to MNGIE patients.


Assuntos
Miopatias Mitocondriais/metabolismo , Mutação , Timidina Fosforilase/metabolismo , Timidina/metabolismo , Células Cultivadas , Cromossomos Humanos Par 22 , Humanos , Miopatias Mitocondriais/genética , Timidina Fosforilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...