Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 134(6): 1686-1692, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24434746

RESUMO

Metastatic melanoma often relapses despite cytotoxic treatment, and hence the understanding of melanoma tumor repopulation is crucial for improving our current therapies. In this study, we aim to define the role of caspase 3 in melanoma tumor growth after cytotoxic therapy. We examined a paradigm-changing hypothesis that dying melanoma cells undergoing apoptosis during cytotoxic treatment activate paracrine signaling events that promote the growth of surviving tumor cells. We propose that caspase 3 has a key role in the initiation of the release of signals from dying cells to stimulate melanoma tumor growth. We created a model for tumor cell repopulation in which a small number of luciferase-labeled, untreated melanoma cells are seeded onto a layer of a larger number of unlabeled, lethally treated melanoma cells. We found that dying melanoma cells significantly stimulate the growth of living melanoma cells in vitro and in vivo. Furthermore, we observed that caspase 3 gene knockdown attenuated the growth-stimulating effect of irradiated, dying cells on living melanoma cell growth. Finally, we showed that caspase 3-mediated dying melanoma cell stimulation of living cell growth involves secreted prostaglandin E2 (PGE2). Our study therefore suggests a counterintuitive strategy to inhibit caspase 3 for therapeutic gain in melanoma treatment.


Assuntos
Caspase 3/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Dinoprostona/metabolismo , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática/métodos , Fibroblastos/metabolismo , Genes Reporter , Humanos , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Nus , Microscopia de Fluorescência/métodos , Transplante de Neoplasias , Recidiva
2.
Cancer Res ; 70(3): 1184-94, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20086172

RESUMO

The G protein-coupled receptor GPR30 binds 17beta-estradiol (E(2)) yet differs from classic estrogen receptors (ERalpha and ERbeta). GPR30 can mediate E(2)-induced nongenomic signaling, but its role in ERalpha-positive breast cancer remains unclear. Gene expression microarray data from five cohorts comprising 1,250 breast carcinomas showed an association between increased GPR30 expression and ERalpha-positive status. We therefore examined GPR30 in estrogenic activities in ER-positive MCF-7 breast cancer cells using G-1 and diethylstilbestrol (DES), ligands that selectively activate GPR30 and ER, respectively, and small interfering RNAs. In expression studies, E(2) and DES, but not G-1, transiently downregulated both ER and GPR30, indicating that this was ER mediated. In Ca(2+) mobilization studies, GPR30, but not ERalpha, mediated E(2)-induced Ca(2+) responses because E(2), 4-hydroxytamoxifen (activates GPR30), and G-1, but not DES, elicited cytosolic Ca(2+) increases not only in MCF-7 cells but also in ER-negative SKBr3 cells. Additionally, in MCF-7 cells, GPR30 depletion blocked E(2)-induced and G-1-induced Ca(2+) mobilization, but ERalpha depletion did not. Interestingly, GPR30-coupled Ca(2+) responses were sustained and inositol triphosphate receptor mediated in ER-positive MCF-7 cells but transitory and ryanodine receptor mediated in ER-negative SKBr3 cells. Proliferation studies involving GPR30 depletion indicated that the role of GPR30 was to promote SKBr3 cell growth but reduce MCF-7 cell growth. Supporting this, G-1 profoundly inhibited MCF-7 cell growth, potentially via p53 and p21 induction. Further, flow cytometry showed that G-1 blocked MCF-7 cell cycle progression at the G(1) phase. Thus, GPR30 antagonizes growth of ERalpha-positive breast cancer and may represent a new target to combat this disease.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células , Receptor alfa de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclopentanos/farmacologia , Dietilestilbestrol/farmacologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Citometria de Fluxo , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Quinolinas/farmacologia , Interferência de RNA , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Mol Cancer Ther ; 6(11): 2817-27, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17989318

RESUMO

Aromatase inhibitors (AI) are being evaluated as long-term adjuvant therapies and chemopreventives in breast cancer. However, there are concerns about bone mineral density loss in an estrogen-free environment. Unlike nonsteroidal AIs, the steroidal AI exemestane may exert beneficial effects on bone through its primary metabolite 17-hydroexemestane. We investigated 17-hydroexemestane and observed it bound estrogen receptor alpha (ERalpha) very weakly and androgen receptor (AR) strongly. Next, we evaluated 17-hydroexemestane in MCF-7 and T47D breast cancer cells and attributed dependency of its effects on ER or AR using the antiestrogen fulvestrant or the antiandrogen bicalutamide. 17-Hydroexemestane induced proliferation, stimulated cell cycle progression and regulated transcription at high sub-micromolar and micromolar concentrations through ER in both cell lines, but through AR at low nanomolar concentrations selectively in T47D cells. Responses of each cell type to high and low concentrations of the non-aromatizable synthetic androgen R1881 paralleled those of 17-hydroexemestane. 17-Hydroexemestane down-regulated ERalpha protein levels at high concentrations in a cell type-specific manner similarly as 17beta-estradiol, and increased AR protein accumulation at low concentrations in both cell types similarly as R1881. Computer docking indicated that the 17beta-OH group of 17-hydroexemestane relative to the 17-keto group of exemestane contributed significantly more intermolecular interaction energy toward binding AR than ERalpha. Molecular modeling also indicated that 17-hydroexemestane interacted with ERalpha and AR through selective recognition motifs employed by 17beta-estradiol and R1881, respectively. We conclude that 17-hydroexemestane exerts biological effects as an androgen. These results may have important implications for long-term maintenance of patients with AIs.


Assuntos
Androgênios/farmacologia , Androstadienos/metabolismo , Androstadienos/farmacologia , Antineoplásicos/farmacologia , Androgênios/química , Androstadienos/química , Ligação Competitiva/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Humanos , Hidroxilação/efeitos dos fármacos , Metribolona/farmacologia , Modelos Moleculares , Receptores Androgênicos/química , Receptores Androgênicos/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...