Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Res ; 195: 107203, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572541

RESUMO

Epilepsy is a chronic brain disorder characterized by unprovoked and recurrent seizures, of which 60% are of unknown etiology. Recent studies implicate microglia in the pathophysiology of epilepsy. However, their role in this process, in particular following early-life seizures, remains poorly understood due in part to the lack of suitable experimental models allowing the in vivo imaging of microglial activity. Given the advantage of zebrafish larvae for minimally-invasive imaging approaches, we sought for the first time to describe the microglial responses after acute seizures in two different zebrafish larval models: a chemically-induced epileptic model by the systemic injection of kainate at 3 days post-fertilization, and the didys552 genetic epilepsy model, which carries a mutation in scn1lab that leads to spontaneous epileptiform discharges. Kainate-treated larvae exhibited transient brain damage as shown by increased numbers of apoptotic nuclei as early as one day post-injection, which was followed by an increase in the number of microglia in the brain. A similar microglial phenotype was also observed in didys552-/- mutants, suggesting that microglia numbers change in response to seizure-like activity in the brain. Interestingly, kainate-treated larvae also displayed a decreased seizure threshold towards subsequent pentylenetetrazole-induced seizures, as shown by higher locomotor and encephalographic activity in comparison with vehicle-injected larvae. These results are comparable to kainate-induced rodent seizure models and suggest the suitability of these zebrafish seizure models for future studies, in particular to elucidate the links between epileptogenesis and microglial dynamic changes after seizure induction in the developing brain, and to understand how these modulate seizure susceptibility.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Microglia , Ácido Caínico/toxicidade , Convulsões/induzido quimicamente , Encéfalo , Pentilenotetrazol/toxicidade , Modelos Animais de Doenças
2.
J Neurosci ; 43(1): 14-27, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36384682

RESUMO

In the neocortex, fast synaptic inhibition orchestrates both spontaneous and sensory-evoked activity. GABAergic interneurons (INs) inhibit pyramidal neurons (PNs) directly, modulating their output activity and thus contributing to balance cortical networks. Moreover, several IN subtypes also inhibit other INs, forming specific disinhibitory circuits, which play crucial roles in several cognitive functions. Here, we studied a subpopulation of somatostatin-positive INs, the Martinotti cells (MCs) in layer 2/3 of the mouse barrel cortex (both sexes). MCs inhibit the distal portion of PN apical dendrites, thus controlling dendrite electrogenesis and synaptic integration. Yet, it is poorly understood whether MCs inhibit other elements of the cortical circuits, and the connectivity properties with non-PN targets are unknown. We found that MCs have a strong preference for PN dendrites, but they also considerably connect with parvalbumin-positive, vasoactive intestinal peptide-expressing, and layer 1 (L1) INs. Remarkably, GABAergic synapses from MCs exhibited clear cell type-specific short-term plasticity. Moreover, whereas the biophysical properties of MC-PN synapses were consistent with distal dendritic inhibition, MC-IN synapses exhibited characteristics of fast perisomatic inhibition. Finally, MC-PN connections used α5-containing GABAA receptors (GABAARs), but this subunit was not expressed by the other INs targeted by MCs. We reveal a specialized connectivity blueprint of MCs within different elements of superficial cortical layers. In addition, our results identify α5-GABAARs as the molecular fingerprint of MC-PN dendritic inhibition. This is of critical importance, given the role of α5-GABAARs in cognitive performance and their involvement in several brain diseases.SIGNIFICANCE STATEMENT Martinotti cells (MCs) are a prominent, broad subclass of somatostatin-expressing GABAergic interneurons, specialized in controlling distal dendrites of pyramidal neurons (PNs) and taking part in several cognitive functions. Here we characterize the connectivity pattern of MCs with other interneurons in the superficial layers (L1 and L2/3) of the mouse barrel cortex. We found that the connectivity pattern of MCs with PNs as well as parvalbumin, vasoactive intestinal peptide, and L1 interneurons exhibit target-specific plasticity and biophysical properties. The specificity of α5-GABAARs at MC-PN synapses and the lack or functional expression of this subunit by other cell types define the molecular identity of MC-PN connections and the exclusive involvement of this inhibitory circuits in α5-dependent cognitive tasks.


Assuntos
Parvalbuminas , Peptídeo Intestinal Vasoativo , Feminino , Masculino , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Parvalbuminas/metabolismo , Neurônios , Células Piramidais/fisiologia , Interneurônios/fisiologia , Somatostatina/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
3.
Stem Cell Res ; 61: 102765, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378365

RESUMO

Mutations in PINK1 and Parkin are two of the main causes of recessive early-onset Parkinson's disease (PD). We generated human induced pluripotent stem cells (hiPSCs) from fibroblasts of a 64-year-old male patient with a homozygous ILE368ASN mutation in PINK1, who experienced disease onset at 33 years, and from fibroblasts of a 61-year-old female patient heterozygous for the R275W mutation in Parkin, who experienced disease onset at 44 years. Array comparative genomic hybridization (aCGH) determined genotypic variation in each line. The cell lines were successfully used to generate midbrain dopaminergic neurons, the neuron type primarily affected in PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Hibridização Genômica Comparativa , Neurônios Dopaminérgicos/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Elife ; 92020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32783810

RESUMO

Down syndrome (DS) results in various degrees of cognitive deficits. In DS mouse models, recovery of behavioral and neurophysiological deficits using GABAAR antagonists led to hypothesize an excessive activity of inhibitory circuits in this condition. Nonetheless, whether over-inhibition is present in DS and whether this is due to specific alterations of distinct GABAergic circuits is unknown. In the prefrontal cortex of Ts65Dn mice (a well-established DS model), we found that the dendritic synaptic inhibitory loop formed by somatostatin-positive Martinotti cells (MCs) and pyramidal neurons (PNs) was strongly enhanced, with no alteration in their excitability. Conversely, perisomatic inhibition from parvalbumin-positive (PV) interneurons was unaltered, but PV cells of DS mice lost their classical fast-spiking phenotype and exhibited increased excitability. These microcircuit alterations resulted in reduced pyramidal-neuron firing and increased phase locking to cognitive-relevant network oscillations in vivo. These results define important synaptic and circuit mechanisms underlying cognitive dysfunctions in DS.


Down syndrome is a genetic disorder caused by the presence of a third copy of chromosome 21. Affected individuals show delayed growth, characteristic facial features, altered brain development; with mild to severe intellectual disability. The exact mechanisms underlying the intellectual disability in Down syndrome are unclear, although studies in mice have provided clues. Drugs that reduce the inhibitory activity in the brain improve cognition in a mouse model of Down syndrome. This suggests that excessive inhibitory activity may contribute to the cognitive impairments. Many different neural circuits generate inhibitory activity in the brain. These circuits contain cells called interneurons. Sub-types of interneurons act via different mechanisms to reduce the activity of neurons. Identifying the interneurons that are affected in Down syndrome would thus improve our understanding of the brain basis of the disorder. Zorrilla de San Martin et al. compared mice with Down syndrome to unaffected control mice. The results revealed an increased activity in two types of inhibitory brain circuits in Down syndrome. The first contains interneurons called Martinotti cells. These help the brain to combine inputs from different sources. The second contains interneurons called parvalbumin-positive basket cells. These help different areas of the brain to synchronize their activity, which in turn makes it easier for those areas to exchange information. By mapping the changes in inhibitory circuits in Down syndrome, Zorrilla de San Martin et al. have provided new insights into the biological basis of the disorder. Future studies should examine whether targeting specific circuits with pharmacological treatments could ultimately help reduce the associated impairments.


Assuntos
Síndrome de Down/fisiopatologia , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/fisiopatologia , Células Piramidais/metabolismo , Somatostatina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
5.
Nanomaterials (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230723

RESUMO

Acyclovir (ACV) is one of the most used antiviral drugs for the treatment of herpes simplex virus infections and other relevant mucosal infections caused by viruses. Nevertheless, the low water solubility of ACV limits both its bioavailability and antiviral performance. The combination of block copolymer micelles and cyclodextrins (CDs) may result in polypseudorotaxanes with tunable drug solubilizing and gelling properties. However, the simultaneous addition of various CDs has barely been investigated yet. The aim of this work was to design and characterize ternary combinations of Pluronic® F127 (PF127), αCD and ßCD in terms of polypseudorotaxane formation, rheological behavior, and ACV solubilization ability and controlled release. The formation of polypseudorotaxanes between PF127 and the CDs was confirmed by FT-IR spectroscopy, X-ray diffraction, and NMR spectroscopy. The effects of αCD/ßCD concentration range (0-7% w/w) on copolymer (6.5% w/w) gel features were evaluated at 20 and 37 °C by rheological studies, resulting in changes of the copolymer gelling properties. PF127 with αCD/ßCD improved the solubilization of ACV, maintaining the biocompatibility (hen's egg test on the chorio-allantoic membrane). In addition, the gels were able to sustain acyclovir delivery. The formulation prepared with similar proportions of αCD and ßCD provided a slower and more constant release. The results obtained suggest that the combination of Pluronic with αCD/ßCD mixtures can be a valuable approach to tune the rheological features and drug release profiles from these supramolecular gels.

6.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669399

RESUMO

Pipemidic acid (HPPA) is a quinolone antibacterial agent used mostly to treat gram-negative infections of the urinary tract, but its therapeutic use is limited because of its low solubility. Thus, to improve drug solubility, natural cyclodextrins (CDs) are used for their ability of including guest molecules within their cavities. The aim of this work was to evaluate the antibacterial activity and the preliminary anticancer activity of HPPA included into Heptakis (2,3,6-tri-O-methyl)-ß-cyclodextrin (TRIMEB) as a possible approach for a new innovative formulation. The inclusion complex of HPPA with TRIMEB was prepared in solid state by the kneading method and confirmed by FT-IR and powered X-ray diffraction. The association in aqueous solutions of pipemidic acid with TRIMEB was investigated by UV-Vis spectroscopy. Job's plots have been drawn by UV-visible spectroscopy to confirm the 1:1 stoichiometry of the host⁻guest assembly. The antibacterial activity of HPPA, TRIMEB and of their complex was tested on Escherichia coli, Pseudomonas aeruginosa, and Staphilococcus aureus. The complex was able to increase 47.36% of the median antibacterial activity of the free HPPA against E. coli (IC50 = 249 µM vs. 473 µM). Furthermore, these samples were tested on HepG-2 and MCF-7. After 72 h, the median tumoral cytotoxicity exerted by the complex was increased by 78.08% and 94.27% for HepG-2 and MCF-7 respectively, showing a stronger bioactivity of the complex than the single HAPPA.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Pipemídico/química , Ácido Pipemídico/farmacologia , beta-Ciclodextrinas/química , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
Molecules ; 21(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916966

RESUMO

Cyclodextrins are natural macrocyclic oligosaccharides able to form inclusion complexes with a wide variety of guests, affecting their physicochemical and pharmaceutical properties. In order to obtain an improvement of the bioavailability and solubility of 5-fluorouracil, a pyrimidine analogue used as chemotherapeutic agent in the treatment of the colon, liver, and stomac cancers, the drug was complexed with alpha- and beta-cyclodextrin. The inclusion complexes were prepared in the solid state by kneading method and characterized by Fourier transform-infrared (FT-IR) spectroscopy and X-ray powder diffractometry. In solution, the 1:1 stoichiometry for all the inclusion complexes was established by the Job plot method and the binding constants were determined at different pHs by UV-VIS titration. Furthermore, the cytotoxic activity of 5-fluorouracil and its complexation products were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on MCF-7 (breast cancer cell line), Hep G2 (hepatocyte carcinoma cell line), Caco-2 (colon adenocarcinoma cell line), and A-549 (alveolar basal epithelial carcinoma cell line). The results showed that both inclusion complexes increased the 5-fluorouracil capability of inhibiting cell growth. In particular, 5-fluorouracil complexed with beta-cyclodextrin had the highest cytotoxic activity on MCF-7; with alpha-cyclodextrin the highest cytotoxic activity was observed on A-549. The IC50 values were equal to 31 and 73 µM at 72 h, respectively. Our results underline the possibility of using these inclusion complexes in pharmaceutical formulations for improving 5-fluorouracil therapeutic efficacy.


Assuntos
Fluoruracila , Neoplasias/tratamento farmacológico , alfa-Ciclodextrinas , beta-Ciclodextrinas , Células CACO-2 , Fluoruracila/química , Fluoruracila/farmacologia , Células Hep G2 , Humanos , Células MCF-7 , alfa-Ciclodextrinas/química , alfa-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
8.
Environ Toxicol Chem ; 27(7): 1576-82, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18260687

RESUMO

The purpose of the present study was to develop sensitive, rapid, and easily quantified avoidance tests for small fish (Danio rerio) in order to provide important ecological information during toxicity assessments. Fish were exposed in three replicate linear flow-through chambers consisting of five compartments. The test system was found to provide a linear contamination gradient, with mean dilutions in each compartment of 90, 70, 50, 30, and 10%. Also, in the absence of a toxic gradient, the fish were uniformly distributed along the five-compartment chambers. Then the apparatus was evaluated by exposing fish to a concentration gradient of copper and a dilution gradient of a field sample contaminated with acid mine drainage (AMD). Avoidance was monitored at 24-h intervals up to 96 h of exposure. The avoidance of copper and AMD by D. rerio was confirmed. The apparatus enabled quantification of median avoidance effect concentrations or dilutions (EC50 or EDil50) and also lowest-observed-effect gradients, which express the minimum toxicant gradient eliciting avoidance, a parameter increasing the ecological relevance of the laboratory avoidance responses. For quantifying avoidance, a 24-h exposure was sufficient, as the 24- to 96-h EC50 and EDil50 values were similar. The avoidance response was easy and rapid to quantify, leading this test to routine use in environmental risk assessment.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cobre/análise , Relação Dose-Resposta a Droga , Ecossistema , Comportamento Alimentar/efeitos dos fármacos , Resíduos Industriais/análise , Medição de Risco , Sensibilidade e Especificidade , Testes de Toxicidade , Poluentes Químicos da Água/análise , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...