Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518219

RESUMO

Triple-negative breast cancer (TNBC) is a breast cancer subtype that lacks targeted treatment options. The activation of the Notch developmental signaling pathway, which is a feature of TNBC, results in the secretion of proinflammatory cytokines and the recruitment of protumoral macrophages to the tumor microenvironment. While the Notch pathway is an obvious therapeutic target, its activity is ubiquitous, and predictably, anti-Notch therapies are burdened with significant on-target side effects. Previously, we discovered that, under conditions of cellular stress commonly found in the tumor microenvironment, the deubiquitinase USP9x forms a multiprotein complex with the pseudokinase tribbles homolog 3 (TRB3) that together activate the Notch pathway. Herein, we provide preclinical studies that support the potential of therapeutic USP9x inhibition to deactivate Notch. Using a murine TNBC model, we show that USP9x knockdown abrogates Notch activation, reducing the production of the proinflammatory cytokines, C-C motif chemokine ligand 2 (CCL2) and interleukin-1 beta (IL-1ß). Concomitant with these molecular changes, a reduction in tumor inflammation, the augmentation of antitumor immune response, and the suppression of tumor growth were observed. The pharmacological inhibition of USP9x using G9, a partially selective, small-molecule USP9x inhibitor, reduced Notch activity, remodeled the tumor immune landscape, and reduced tumor growth without associated toxicity. Proving the role of Notch, the ectopic expression of the activated Notch1 intracellular domain rescued G9-induced effects. This work supports the potential of USP9x inhibition to target Notch in metabolically vulnerable tissues like TNBC, while sparing normal Notch-dependent tissues.


Assuntos
Receptores Notch/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/genética , Ubiquitina Tiolesterase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Citocinas/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Interleucina-1beta/genética , Macrófagos/patologia , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética
2.
Oncotarget ; 12(3): 160-172, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33613844

RESUMO

Melanoma tumors driven by BRAF mutations often do not respond to BRAF/MEK/ERK pathway inhibitors currently used in treatment. One documented mechanism of resistance is upregulation of SOX2, a transcription factor that is essential for tumor growth and expansion, particularly in melanoma tumors with BRAF mutations. Targeting transcription factors pharmacologically has been elusive for drug developers, limiting treatment options. Here we show that ubiquitin-specific peptidase 9, X-linked (Usp9x), a deubiquitinase (DUB) enzyme controls SOX2 levels in melanoma. Usp9x knockdown in melanoma increased SOX2 ubiquitination, leading to its depletion, and enhanced apoptotic effects of BRAF inhibitor and MEK inhibitors. Primary metastatic melanoma samples demonstrated moderately elevated Usp9x and SOX2 protein expression compared to tumors without metastatic potential. Usp9x knockdown, as well as inhibition with DUB inhibitor, G9, blocked SOX2 expression, suppressed in vitro colony growth, and induced apoptosis of BRAF-mutant melanoma cells. Combined treatment with Usp9x and mutant BRAF inhibitors fully suppressed melanoma growth in vivo. Our data demonstrate a novel mechanism for targeting the transcription factor SOX2, leveraging Usp9x inhibition. Thus, development of DUB inhibitors may add to the limited repertoire of current melanoma treatments.

3.
Oncotarget ; 10(56): 5745-5754, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31645897

RESUMO

The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway. TRAIL treatment in cancer cells reduced the activity and cleavage of USP5, a deubiquitinase (DUB) previously shown to target unanchored Ub polymers and regulate p53-mediated transcription. TRAIL was effective in suppressing USP5 activity and cleavage in TRAIL-sensitive cells but not resistant cells. Knockdown of USP5 in TRAIL-resistant cells demonstrated that USP5 controls apoptotic responsiveness to TRAIL. USP5 cleavage and ubiquitination were blocked by caspase-8 specific inhibitors. A small-molecule USP5/9× inhibitor (G9) combined with TRAIL enhanced apoptosis and blocked colony growth in highly TRAIL-resistant cell lines. Finally, USP5 protein levels and activity were found to be frequently deregulated in TRAIL-resistant cells. Together, we conclude that activated TRAIL enhances USP5 activity and induces apoptosis in TRAIL-sensitive and -resistant cells. We also suggest that USP5 inhibition may be effective in inducing apoptotic thresholds to enhance responsiveness to TRAIL.

4.
Neoplasia ; 20(2): 152-164, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29248719

RESUMO

Usp9x has emerged as a potential therapeutic target in some hematologic malignancies and a broad range of solid tumors including brain, breast, and prostate. To examine Usp9x tumorigenicity and consequence of Usp9x inhibition in human pancreatic tumor models, we carried out gain- and loss-of-function studies using established human pancreatic tumor cell lines (PANC1 and MIAPACA2) and four spontaneously immortalized human pancreatic patient-derived tumor (PDX) cell lines. The effect of Usp9x activity inhibition by small molecule deubiquitinase inhibitor G9 was assessed in 2D and 3D culture, and its efficacy was tested in human tumor xenografts. Overexpression of Usp9x increased 3D growth and invasion in PANC1 cells and up-regulated the expression of known Usp9x substrates Mcl-1 and ITCH. Usp9x inhibition by shRNA-knockdown or by G9 treatment reduced 3D colony formation in PANC1 and PDX cell lines, induced rapid apoptosis in MIAPACA2 cells, and associated with reduced Mcl-1 and ITCH protein levels. Although G9 treatment reduced human MIAPACA2 tumor burden in vivo, in mouse pancreatic cancer cell lines established from constitutive (8041) and doxycycline-inducible (4668) KrasG12D/Tp53R172H mouse pancreatic tumors, Usp9x inhibition increased and sustained the 3D colony growth and showed no significant effect on tumor growth in 8041-xenografts. Thus, Usp9x inhibition may be therapeutically active in human PDAC, but this activity was not predicted from studies of genetically engineered mouse pancreatic tumor models.


Assuntos
Carcinoma Ductal Pancreático/patologia , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , Ubiquitina Tiolesterase/metabolismo , Animais , Apoptose , Carcinoma Ductal Pancreático/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/metabolismo , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Commun ; 8: 14449, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198367

RESUMO

ETS transcription factors are commonly deregulated in cancer by chromosomal translocation, overexpression or post-translational modification to induce gene expression programs essential in tumorigenicity. Targeted destruction of these proteins may have therapeutic impact. Here we report that Ets-1 destruction is regulated by the deubiquitinating enzyme, Usp9x, and has major impact on the tumorigenic program of metastatic melanoma. Ets-1 deubiquitination blocks its proteasomal destruction and enhances tumorigenicity, which could be reversed by Usp9x knockdown or inhibition. Usp9x and Ets-1 levels are coincidently elevated in melanoma with highest levels detected in metastatic tumours versus normal skin or benign skin lesions. Notably, Ets-1 is induced by BRAF or MEK kinase inhibition, resulting in increased NRAS expression, which could be blocked by inactivation of Usp9x and therapeutic combination of Usp9x and MEK inhibitor fully suppressed melanoma growth. Thus, Usp9x modulates the Ets-1/NRAS regulatory network and may have biologic and therapeutic implications.


Assuntos
Carcinogênese/patologia , GTP Fosfo-Hidrolases/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Melanoma/tratamento farmacológico , Proteínas de Membrana/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Regiões Promotoras Genéticas/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Estabilidade Proteica , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo
6.
Leuk Lymphoma ; 58(9): 1-14, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28084835

RESUMO

Chronic myeloid leukemia (CML) is characterized by the chromosomal translocation 9;22, known as the Philadelphia chromosome (Ph), which produces the BCR-ABL fusion tyrosine kinase. Although well-managed by BCR-ABL tyrosine kinase inhibitors (TKIs), treatment fails to eliminate Ph + primitive progenitors, and cessation of therapy frequently results in relapse. The p53 protein is an important regulator of cell cycle and apoptosis. The small molecules MI-219 target the interaction between p53 and its negative regulator HDM2, leading to its stabilization and activation. We show that treatment with MI-219 reduced the number of CML cells in both in vitro and in vivo settings but not that of normal primitive progenitors, and activated different gene signatures in CML potentially explaining the differential impact of this agent on each population. Our data suggest that a p53-activating agent may be an effective approach in the management and potential operational cure of CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Análise por Conglomerados , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Antimicrob Agents Chemother ; 60(7): 4183-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27139470

RESUMO

Due to the rise of antibiotic resistance and the small number of effective antiviral drugs, new approaches for treating infectious diseases are urgently needed. Identifying targets for host-based therapies represents an emerging strategy for drug discovery. The ubiquitin-proteasome system is a central mode of signaling in the eukaryotic cell and may be a promising target for therapies that bolster the host's ability to control infection. Deubiquitinase (DUB) enzymes are key regulators of the host inflammatory response, and we previously demonstrated that a selective DUB inhibitor and its derivative promote anti-infective activities in host cells. To find compounds with anti-infective efficacy but improved toxicity profiles, we tested a library of predominantly 2-cyano-3-acrylamide small-molecule DUB inhibitors for anti-infective activity in macrophages against two intracellular pathogens: murine norovirus (MNV) and Listeria monocytogenes We identified compound C6, which inhibited DUB activity in human and murine cells and reduced intracellular replication of both pathogens with minimal toxicity in cell culture. Treatment with C6 did not significantly affect the ability of macrophages to internalize virus, suggesting that the anti-infective activity interferes with postentry stages of the MNV life cycle. Metabolic stability and pharmacokinetic assays showed that C6 has a half-life in mouse liver microsomes of ∼20 min and has a half-life of approximately 4 h in mice when administered intravenously. Our results provide a framework for targeting the host ubiquitin system in the development of host-based therapies for infectious disease. Compound C6 represents a promising tool with which to elucidate the role of DUBs in the macrophage response to infection.


Assuntos
Antivirais/farmacologia , Animais , Enzimas Desubiquitinantes/metabolismo , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/metabolismo , Macrófagos/virologia , Camundongos , Norovirus/efeitos dos fármacos , Norovirus/metabolismo , Replicação Viral/efeitos dos fármacos
8.
Oncotarget ; 6(32): 33206-16, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26375673

RESUMO

We investigated the efficacy of targeting the PIM kinase pathway in Philadelphia chromosome-positive (Ph+) leukemias. We provide evidence that inhibition of PIM, with the pan-PIM inhibitor SGI-1776, results in suppression of classic PIM effectors and also elements of the mTOR pathway, suggesting interplay between PIM and mTOR signals. Our data demonstrate that PIM inhibition enhances the effects of imatinib mesylate on Ph+ leukemia cells. We also found that PIM inhibition results in suppression of leukemic cell proliferation and induction of apoptosis of Ph+ leukemia cells, including those resistant to imatinib mesylate. Importantly, inhibition of PIM results in enhanced suppression of primary leukemic progenitors from patients with CML. Altogether these findings suggest that pharmacological PIM targeting may provide a unique therapeutic approach for the treatment of Ph+ leukemias.


Assuntos
Proteínas de Fusão bcr-abl/genética , Genes abl/genética , Imidazóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcr/genética , Piridazinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Mutação , Cromossomo Filadélfia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Células Tumorais Cultivadas
9.
Blood ; 125(23): 3588-97, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25814533

RESUMO

Usp9x was recently shown to be highly expressed in myeloma patients with short progression-free survival and is proposed to enhance stability of the survival protein Mcl-1. In this study, we found that the partially selective Usp9x deubiquitinase inhibitor WP1130 induced apoptosis and reduced Mcl-1 protein levels. However, short hairpin RNA-mediated knockdown (KD) of Usp9x in myeloma cells resulted in transient induction of apoptosis, followed by a sustained reduction in cell growth. A compensatory upregulation of Usp24, a deubiquitinase closely related to Usp9x, in Usp9x KD cells was noted. Direct Usp24 KD resulted in marked induction of myeloma cell death that was associated with a reduction of Mcl-1. Usp24 was found to sustain myeloma cell survival and Mcl-1 regulation in the absence of Usp9x. Both Usp9x and Usp24 were expressed and activated in primary myeloma cells whereas Usp24 protein overexpression was noted in some patients with drug-refractory myeloma and other B-cell malignancies. Furthermore, we improved the drug-like properties of WP1130 and demonstrated that the novel compound EOAI3402143 dose-dependently inhibited Usp9x and Usp24 activity, increased tumor cell apoptosis, and fully blocked or regressed myeloma tumors in mice. We conclude that small-molecule Usp9x/Usp24 inhibitors may have therapeutic activity in myeloma.


Assuntos
Apoptose/efeitos dos fármacos , Cianoacrilatos/farmacologia , Inibidores Enzimáticos/farmacologia , Linfoma de Célula do Manto/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Piridinas/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Animais , Apoptose/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma de Célula do Manto/enzimologia , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Masculino , Camundongos , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
10.
PLoS One ; 9(8): e104096, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093325

RESUMO

The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity.


Assuntos
Anti-Infecciosos/farmacologia , Macrófagos/microbiologia , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Animais , Antivirais/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Cianoacrilatos/química , Cianoacrilatos/farmacologia , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Peso Molecular , Norovirus/efeitos dos fármacos , Piridinas/química , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Proteases Específicas de Ubiquitina/metabolismo
11.
Cancer Res ; 74(18): 4955-66, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172841

RESUMO

The ubiquitin-proteasome system (UPS) has emerged as a therapeutic focus and target for the treatment of cancer. The most clinically successful UPS-active agents (bortezomib and lenalidomide) are limited in application to hematologic malignancies, with only marginal efficacy in solid tumors. Inhibition of specific ubiquitin E3 ligases has also emerged as a valid therapeutic strategy, and many targets are currently being investigated. Another emerging and promising approach in regulation of the UPS involves targeting deubiquitinases (DUB). The DUBs comprise a relatively small group of proteins, most with cysteine protease activity that target several key proteins involved in regulation of tumorigenesis, apoptosis, senescence, and autophagy. Through their multiple contacts with ubiquitinated protein substrates involved in these pathways, DUBs provide an untapped means of modulating many important regulatory proteins that support oncogenic transformation and progression. Ubiquitin-specific proteases (USP) are one class of DUBs that have drawn special attention as cancer targets, as many are differentially expressed or activated in tumors or their microenvironment, making them ideal candidates for drug development. This review attempts to summarize the USPs implicated in different cancers, the current status of USP inhibitor-mediated pharmacologic intervention, and future prospects for USP inhibitors to treat diverse cancers.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteases Específicas de Ubiquitina/metabolismo , Animais , Humanos , Terapia de Alvo Molecular , Inibidores de Proteases/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos
12.
Oncotarget ; 5(14): 5559-69, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24980819

RESUMO

Usp5 is a deubiquitinase (DUB) previously shown to regulate unanchored poly-ubiquitin (Ub) chains, p53 transcriptional activity and double-strand DNA repair. In BRAF mutant melanoma cells, Usp5 activity was suppressed by BRAF inhibitor (vemurafenib) in sensitive but not in acquired or intrinsically resistant cells. Usp5 knockdown overcame acquired vemurafenib resistance and sensitized BRAF and NRAS mutant melanoma cells to apoptosis initiated by MEK inhibitor, cytokines or DNA-damaging agents. Knockdown and overexpression studies demonstrated that Usp5 regulates p53 (and p73) levels and alters cell growth and cell cycle distribution associated with p21 induction. Usp5 also regulates the intrinsic apoptotic pathway by modulating p53-dependent FAS expression. A small molecule DUB inhibitor (EOAI3402143) phenocopied the FAS induction and apoptotic sensitization of Usp5 knockdown and fully blocked melanoma tumor growth in mice. Overall, our results demonstrate that BRAF activates Usp5 to suppress cell cycle checkpoint control and apoptosis by blocking p53 and FAS induction; all of which can be restored by small molecule-mediated Usp5 inhibition. These results suggest that Usp5 inhibition can provide an alternate approach in recovery of diminished p53 (or p73) function in melanoma and can add to the targeted therapies already used in the treatment of melanoma.


Assuntos
Endopeptidases/metabolismo , Melanoma Experimental/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Receptor fas/sangue , Animais , Proliferação de Células/fisiologia , Endopeptidases/genética , Melanoma Experimental/sangue , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
13.
PLoS One ; 9(4): e94491, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722666

RESUMO

Most antiviral treatment options target the invading pathogen and unavoidably encounter loss of efficacy as the pathogen mutates to overcome replication restrictions. A good strategy for circumventing drug resistance, or for pathogens without treatment options, is to target host cell proteins that are utilized by viruses during infection. The small molecule WP1130 is a selective deubiquitinase inhibitor shown previously to successfully reduce replication of noroviruses and some other RNA viruses. In this study, we screened a library of 31 small molecule derivatives of WP1130 to identify compounds that retained the broad-spectrum antiviral activity of the parent compound in vitro but exhibited improved drug-like properties, particularly increased aqueous solubility. Seventeen compounds significantly reduced murine norovirus infection in murine macrophage RAW 264.7 cells, with four causing decreases in viral titers that were similar or slightly better than WP1130 (1.9 to 2.6 log scale). Antiviral activity was observed following pre-treatment and up to 1 hour postinfection in RAW 264.7 cells as well as in primary bone marrow-derived macrophages. Treatment of the human norovirus replicon system cell line with the same four compounds also decreased levels of Norwalk virus RNA. No significant cytotoxicity was observed at the working concentration of 5 µM for all compounds tested. In addition, the WP1130 derivatives maintained their broad-spectrum antiviral activity against other RNA viruses, Sindbis virus, LaCrosse virus, encephalomyocarditis virus, and Tulane virus. Thus, altering structural characteristics of WP1130 can maintain effective broad-spectrum antiviral activity while increasing aqueous solubility.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Nitrilas/farmacologia , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Cianoacrilatos , Vírus da Encefalomiocardite/efeitos dos fármacos , Vírus da Encefalomiocardite/fisiologia , Inibidores Enzimáticos/química , Interações Hospedeiro-Patógeno , Humanos , Vírus La Crosse/efeitos dos fármacos , Vírus La Crosse/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Camundongos , Nitrilas/química , Norovirus/efeitos dos fármacos , Norovirus/fisiologia , Vírus Norwalk/efeitos dos fármacos , Vírus Norwalk/fisiologia , Cultura Primária de Células , Piridinas/química , Sindbis virus/efeitos dos fármacos , Sindbis virus/fisiologia , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Proteases Específicas de Ubiquitina/metabolismo
14.
Bioorg Med Chem ; 22(4): 1450-8, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24457091

RESUMO

A series of degrasyn-like symmetrical compounds have been designed, synthesized, and screened against B cell malignancy (multiple myeloma, mantle cell lymphoma) cell lines. The lead compounds T5165804 and CP2005 showed higher nanomolar potency against these tumor cells in comparison to degrasyn and inhibited Usp9x activity in vitro and in intact cells. These observations suggest that this new class of compounds holds promise as cancer therapeutic agents.


Assuntos
Antineoplásicos/química , Nitrilas/química , Piridinas/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cianoacrilatos , Dimerização , Humanos , Modelos Moleculares , Mieloma Múltiplo/tratamento farmacológico , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo
15.
Breast Cancer Res ; 16(5): 461, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25606592

RESUMO

Key mediators of signaling pathways in breast cancer involve post-translational protein modification, primarily mediated through phosphorylation and ubiquitination. While previous studies focused on phosphorylation events, more recent analysis suggests that ubiquitin plays a parallel and equally important role in several signaling and cell regulatory events in breast cancer. Availability of new tools capable of sensitive detection of gene mutations and aberrant expression of genes and proteins coupled with gene-specific knockdown and silencing protocols have provided insight into the previously unexplored ubiquitin regulatory process within these tumors. Ubiquitin-specific proteases are one class of enzymes with protein deubiquitinating activity, making up the majority of protein deubiquitinating diversity within mammalian cells. Ubiquitin-specific proteases are also emerging as potential therapeutic targets in many diseases, including cancer. In this report, we summarize the involvement of this class of enzymes in breast cancer signaling and cell regulation and illustrate the potential for additional studies to define novel targets and approaches in breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores de Proteases/farmacologia , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/enzimologia , Feminino , Humanos , Terapia de Alvo Molecular , Inibidores de Proteases/uso terapêutico , Transdução de Sinais , Proteases Específicas de Ubiquitina/metabolismo
16.
PLoS Pathog ; 8(7): e1002783, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792064

RESUMO

Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.


Assuntos
Antivirais/farmacologia , Nitrilas/farmacologia , Norovirus/efeitos dos fármacos , Piridinas/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Linhagem Celular , Linhagem Celular Tumoral , Cianoacrilatos , Proteínas de Ligação a DNA/metabolismo , Vírus da Encefalomiocardite/efeitos dos fármacos , Vírus da Encefalomiocardite/patogenicidade , Inibidores Enzimáticos/farmacologia , Humanos , Vírus La Crosse/efeitos dos fármacos , Vírus La Crosse/patogenicidade , Macrófagos/virologia , Proteínas de Membrana/metabolismo , Camundongos , Norovirus/fisiologia , Vírus Norwalk/efeitos dos fármacos , Vírus Norwalk/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição de Fator Regulador X , Sindbis virus/efeitos dos fármacos , Sindbis virus/patogenicidade , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Replicação Viral/efeitos dos fármacos , Proteína 1 de Ligação a X-Box
17.
Bioorg Med Chem ; 19(23): 7194-204, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22036213

RESUMO

With the goal of developing small molecules as novel regulators of signal transduction and apoptosis, a series of tyrphostin-like compounds were synthesized and screened for their activity against MM-1 (multiple myeloma) cells and other cell lines representing this malignancy. Synthesis was completed in solution-phase initially and then adopted to solid-phase for generating a more diverse set of compounds. A positive correlation was noted between compounds capable of inducing apoptosis and their modulation of protein ubiquitination. Further analysis suggested that ubiquitin modulation occurs through inhibition of cellular deubiquitinase activity. Bulky groups on the sidechain near the α,ß-unsaturated ketone caused a complete loss of activity, whereas cyclization on the opposite side was tolerated. Theoretical calculations at the B3LYP/LACV3P(∗∗) level were completed on each molecule, and the resulting molecular orbitals and Fukui reactivity values for C(ß) carbon were utilized in developing a model to explain the compound activity.


Assuntos
Mieloma Múltiplo/tratamento farmacológico , Tirfostinas/química , Tirfostinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Camundongos , Camundongos Nus , Modelos Moleculares , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Ubiquitina/metabolismo
18.
Blood ; 118(15): 4009-10, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21998331
19.
Blood ; 118(24): 6399-402, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-22021366

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in growth and survival of BCR-ABL transformed cells. AMPK kinase is a metabolic sensor that exhibits suppressive effects on the mTOR pathway and negatively regulates mTOR activity. We report that AMPK activators, such as metformin and 5-aminoimidazole-4-carboxamide ribonucleotide, suppress activation of the mTOR pathway in BCR-ABL-expressing cells. Treatment with these inhibitors results in potent suppression of chronic myeloid leukemia leukemic precursors and Ph(+) acute lymphoblastic leukemia cells, including cells expressing the T315I-BCR-ABL mutation. Altogether, our data suggest that AMPK is an attractive target for the treatment of BCR-ABL-expressing malignancies and raise the potential for use of AMPK activators in the treatment of refractory chronic myeloid leukemia and Ph(+) acute lymphoblastic leukemia.


Assuntos
Antineoplásicos/farmacologia , Transformação Celular Neoplásica/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Proteínas Quinases/química , Quinases Proteína-Quinases Ativadas por AMP , Substituição de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Linfoide/tratamento farmacológico , Leucemia Linfoide/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Metformina/farmacologia , Terapia de Alvo Molecular , Proteínas Mutantes/metabolismo , Pró-Fármacos/farmacologia , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...