Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 954966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189229

RESUMO

Chronic graft-versus-host disease (cGVHD) remains a frequent cause of non-relapse morbidity and mortality after allogeneic hematopoietic stem cell transplantation. In our single center trials of low-dose interleukin-2 (LD IL-2), the immunomodulatory properties of regulatory T cells (Tregs) have been harnessed to treat steroid-refractory cGVHD (SR-cGVHD) safely and effectively in adults and children. In these trials, 50-60% of patients showed clinical improvement of their cGVHD manifestations with partial responses at the primary response endpoint of 8-12 weeks. Many patients continued extended duration LD IL-2 therapy and achieved deeper clinical responses, including some complete responses. However, the durability of the clinical and immunologic improvement following IL-2 discontinuation has not been reported previously. We examined 20 adult and 2 pediatric patients who received extended duration LD IL-2 for a median of 103 weeks (range, 21-258) and had stable improvement or resolution of their cGVHD symptoms before discontinuing LD IL-2 therapy. The median follow-up after stopping IL-2 was 203 weeks (range 92-599). During this time, 16 patients (73%) were able to wean off all systemic immunosuppression without disease flare or progression. Among 13 patients with available immune cell data, the median fold change in absolute Treg count was 0.58 between 1 to 10 weeks after stopping IL-2 whereas CD4+ conventional T-cell (Tcon) and CD8+ T-cell numbers remained stable. Despite a decline in Treg numbers after IL-2 discontinuation, Treg numbers remained above the pre-treatment baseline. In addition, many patients had sustained clinical improvement after stopping IL-2, suggesting that extended IL-2 therapy can lead to immune tolerance.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Adulto , Criança , Doença Crônica , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Humanos , Interleucina-2/uso terapêutico , Esteroides/uso terapêutico
2.
Nat Commun ; 8: 14332, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134244

RESUMO

Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis - the quorum-sensing pentapeptide CSF and nitric oxide (NO) - are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Transdução de Sinais/fisiologia , Animais , Biofilmes , Regulação para Baixo , Comportamento Alimentar/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Óxido Nítrico/metabolismo , Comportamento Predatório/fisiologia , Receptor de Insulina/metabolismo , Fatores de Transcrição/metabolismo
3.
mBio ; 6(4): e00581, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26152584

RESUMO

UNLABELLED: Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. IMPORTANCE: Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective decision to move over or stay attached to a surface controlled? Here, we use the model plant-beneficial bacterium Bacillus subtilis to answer this question. Remarkably, we discover that sessile biofilm formation and social sliding motility share the same structural components and the Spo0A regulatory network via sensor kinases, KinB and KinC. Potassium, an inhibitor of KinC-dependent biofilm formation, triggers sliding via a potassium-perceiving cytosolic domain of KinB that resembles the selectivity filter of potassium channels. The spatiotemporal response of these kinases to variable potassium levels and the gradual increase in Spo0A~Pi levels that orchestrates the activation of sliding before biofilm formation shed light on how multicellular behaviors formerly believed to be antagonistic work together to benefit the population fitness.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Potássio/metabolismo , Proteínas Quinases/metabolismo , Bacillus subtilis/metabolismo , Perfilação da Expressão Gênica , Histidina Quinase , Locomoção , Dados de Sequência Molecular , Análise de Sequência de DNA
4.
Eur J Pharmacol ; 715(1-3): 117-22, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23791849

RESUMO

The effects of the in vivo administration of baclofen on renal tubular transport and aquaporin-2 (AQP2) expression were evaluated. In conscious animals kept in metabolic cages, baclofen (0.01-1mg/kg, s.c.) induced a dose-dependent increment in the urine flow rate (UFR) and in sodium and potassium excretion, associated with an increased osmolal clearance (Closm), a diminished urine to plasma osmolality ratio (Uosm/Posm) and a decrease in AQP2 expression. The above mentioned baclofen effects on functional parameters were corroborated by using conventional renal clearance techniques. Additionally, this model allowed the detection of a diminution in glucose reabsorption. Some experiments were performed with water-deprived or desmopressin-treated rats kept in metabolic cages. Either water deprivation or desmopressin treatment decreased the UFR and increased the Uosm/Posm. Baclofen did not change the Uosm/Posm or AQP2 expression in desmopressin-treated rats; but it increased the UFR and diminished the Uosm/Posm and AQP2 expression in water-deprived animals. These results indicate that in vivo administration of baclofen promotes alterations in proximal tubular transport, since glucose reabsorption was decreased. The distal tubular function was also affected. The increased Closm indicates an alteration in solute reabsorption at the ascending limb of the Henle's loop. The decreased Uosm/Posm and AQP2 expression in controls and in water-deprived, but not in desmopressin-treated rats, lead us to speculate that some effect of baclofen on endogenous vasopressin availability could be responsible for the impaired urine concentrating ability, more than any disturbance in the responsiveness of the renal cells to the hormone.


Assuntos
Baclofeno/administração & dosagem , Baclofeno/farmacologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/fisiologia , Animais , Aquaporina 2/metabolismo , Estado de Consciência , Desamino Arginina Vasopressina/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Ratos , Ratos Wistar , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...