Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(1): 17, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078944

RESUMO

MAIN CONCLUSION: Soil compaction reduces root exploration in chickpea. We found genes related to root architectural traits in chickpea that can help understand and improve root growth in compacted soils. Soil compaction is a major concern for modern agriculture, as it constrains plant root growth, leading to reduced resource acquisition. Phenotypic variation for root system architecture (RSA) traits in compacted soils is present for various crops; however, studies on genetic associations with these traits are lacking. Therefore, we investigated RSA traits in different soil compaction levels and identified significant genomic associations in chickpea. We conducted a Genome-Wide Association Study (GWAS) of 210 chickpea accessions for 13 RSA traits under three bulk densities (BD) (1.1BD, 1.6BD, and 1.8BD). Soil compaction decreases root exploration by reducing 12 RSA traits, except average diameter (AD). Further, AD is negatively correlated with lateral root traits, and this correlation increases in 1.8BD, suggesting the negative effect of AD on lateral root traits. Interestingly, we identified probable candidate genes such as GLP3 and LRX for lateral root traits and CRF1-like for total length (TL) in 1.6BD soil. In heavy soil compaction, DGK2 is associated with lateral root traits. Reduction in laterals during soil compaction is mainly due to delayed seedling establishment, thus making lateral root number a critical trait. Interestingly, we also found a higher contribution of the  GxE component of the number of root tips (Tips) to the total variation than the other lateral traits. We also identified a pectin esterase, PPE8B, associated with Tips in high soil compaction and a significantly associated SNP with the relative change in Tips depicting a trade-off between Tips and AD. Identified genes and loci would help develop soil-compaction-resistant chickpea varieties.


Assuntos
Cicer , Solo , Estudo de Associação Genômica Ampla , Cicer/genética , Raízes de Plantas/genética , Genômica
2.
Physiol Mol Biol Plants ; 27(3): 543-562, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33854283

RESUMO

Rice is an important source of calorie for the growing world population. Its productivity, however is affected by climatic adversities, pest attacks, diseases of bacterial, viral and fungal origin and many other threats. Developing cultivars that are high yielding and stress resilient seems a better solution to tackle global food security issues. This study investigates the potential resistance of 24 rice cultivars against Xanthomonas oryzae pv. Oryzae (Xoo) infection that causes bacterial leaf blight disease and submergence stress. Bacterial leaf blight (BLB) resistance genes (Xa4, xa5, xa13, Xa21, Xa38) and submergence tolerance (Sub1) gene specific markers were used to determine the allelic status of genotypes. The results displayed presence of Xa4 resistance allele (78.95%), xa5 (15.79%) but xa13 and Sub1 tolerance allele were not found in any genotype. However, a new allele for Xa21 (84.21%) and Xa38 (10.52%) were identified in several genotypes. Phenotypic screening for both stress conditions was done to record the cultivars response. None of the genotypes showed resistance against Xoo, although varieties viz., Tapaswini and Konark showed moderate susceptibility. Likewise, survival percentage of genotypes under submergence stress varied from 0 to 100%. Tolerant checks FR13A (100%) and Swarna Sub1 (97.78%) exhibited high survival rate, whereas among genotypes, Gayatri (57.78%) recorded high survivability even though it lacked Sub1 tolerant its genetic background. A total of six trait specific STS and two SSR markers generated an average of 2.38 allele per locus. Polymorphism information content (PIC) value ranged from 0.08 to 0.42 with an average of 0.20. Structure analysis categorized 24 genotypes into two sub-populations, which was in correspondence with Nei's genetic distance-based NJ tree and principal co-ordinate analysis (PCoA). Swarna Sub1 could be differentiated clearly from BLB resistant check, IRBB60 and other 22 genotypes without having Sub1 gene. Analysis of molecular variance (AMOVA) revealed more genetic variation within population than among population. Principal component analysis (PCA) showed that 9 morphological traits collectively explained 76.126% of total variation among all the genotypes studied. The information from this study would be useful in future breeding programs for pyramiding trait specific genes into high yielding cultivars that fall behind with respect to stress resilience. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00951-1.

4.
J Biomol Struct Dyn ; 39(7): 2617-2627, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238078

RESUMO

Recent outbreak of Coronavirus disease (COVID-19) pandemic around the world is associated with 'severe acute respiratory syndrome' (SARS-CoV2) in humans. SARS-CoV2 is an enveloped virus and E proteins present in them are reported to form ion channels, which is mainly associated with pathogenesis. Thus, there is always a quest to inhibit these ion channels, which in turn may help in controlling diseases caused by SARS-CoV2 in humans. Considering this, in the present study, authors employed computational approaches for studying the structure as well as function of the human 'SARS-CoV2 E' protein as well as its interaction with various phytochemicals. Result obtained revealed that α-helix and loops present in this protein experience random movement under optimal condition, which in turn modulate ion channel activity; thereby aiding the pathogenesis caused via SARS-CoV2 in human and other vertebrates. However, after binding with Belachinal, Macaflavanone E, and Vibsanol B, the random motion of the human 'SARS-CoV2 E' protein gets reduced, this, in turn, inhibits the function of the 'SARS-CoV2 E' protein. It is pertinent to note that two amino acids, namely VAL25 and PHE26, play a key role while interacting with these three phytochemicals. As these three phytochemicals, namely, Belachinal, Macaflavanone E & Vibsanol B, have passed the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) property as well as 'Lipinski's Rule of 5s', they may be utilized as drugs in controlling disease caused via SARS-COV2, after further investigation.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Proteínas do Envelope de Coronavírus , Animais , Humanos , Canais Iônicos , RNA Viral , SARS-CoV-2
5.
PLoS One ; 15(7): e0227785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673318

RESUMO

A panel of 60 genotypes comprising New Plant Types (NPTs) along with indica, tropical and temperate japonica genotypes was phenotypically evaluated for four seasons in irrigated situation for grain yield per se and component traits. Twenty NPT genotypes were found promising with an average grain yield varying from 5.45 to 8.8 t/ha. A total of 85 SSR markers were used in the study to identify QTLs associated with grain yield per se and related traits. Sixty-six (77.65%) markers were found to be polymorphic. The PIC values varied from 0.516 to 0.92 with an average of 0.704. A moderate level of genetic diversity (0.39) was detected among genotypes. Variation to the tune of 8% within genotypes, 68% among the genotypes within the population and 24% among the populations were observed (AMOVA). This information may help in identification of potential parents for development of transgressive segregants with very high yield. The association analysis using GLM and MLM models led to the identification of 30 and 10 SSR markers associated with 70 and 16 QTLs, respectively. Thirty novel QTLs linked with 16 SSRs were identified to be associated with eleven traits, namely tiller number (qTL-6.1, qTL-11.1, qTL-4.1), panicle length (qPL-1.1, qPL-5.1, qPL-7.1, qPL-8.1), flag leaf length (qFLL-8.1, qFLL-9.1), flag leaf width (qFLW-6.2, qFLW-5.1, qFLW-8.1, qFLW-7.1), total no. of grains (qTG-2.2, qTG-a7.1), thousand-grain weight (qTGW-a1.1, qTGW-a9.2, qTGW-5.1, qTGW-8.1), fertile grains (qFG-7.1), seed length-breadth ratio (qSlb-3.1), plant height (qPHT-6.1, qPHT-9.1), days to 50% flowering (qFD-1.1) and grain yield per se (qYLD-5.1, qYLD-6.1a, qYLD-11.1).Some of the SSRs were co-localized with more than two traits. The highest co-localization was identified with RM5709 linked to nine traits, followed by RM297 with five traits. Similarly, RM5575, RM204, RM168, RM112, RM26499 and RM22899 were also recorded to be co-localized with more than one trait and could be rated as important for marker-assisted backcross breeding programs, for pyramiding of these QTLs for important yield traits, to produce new-generation rice for prospective increment in yield potentiality and breaking yield ceiling.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Grão Comestível/genética , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Oryza/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Análise de Componente Principal
6.
Physiol Mol Biol Plants ; 26(5): 885-898, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32377039

RESUMO

Continuous rise in the human population has resulted in an upsurge in food demand, which in turn demand grain yield enhancement of cereal crops, including rice. Rice yield is estimated via the number of tillers, grain number per panicles, and the number of spikes present per panicle. Marker-assisted selection (MAS) serve as one of the best ways to introduce QTLs/gene associated with yield in the rice plant. MAS has also been employed effectively in dissecting several other complex agricultural traits, for instance, drought, cold tolerance, salinity, etc. in rice plants. Thus, in this review, authors attempted to collect information about various genes/QTLs associated with high yield, including grain number, in rice and how different scheme of MAS can be employed to introduce them in rice (Oryza sativa L.) plant, which in turn will enhance rice yield. Information obtained to date suggest that, numerous QTLs, e.g., Gn1a, Dep1, associated with grain number and yield-related traits, have been identified either via mapping or cloning approaches. These QTLs have been successfully introduced into rice plants using various schemes of MAS for grain yield enhancement in rice. However, sometimes, MAS does not perform well in breeding, which might be due to lack of resources, skilled labors, reliable markers, and high costs associated with MAS. Thus, by overcoming these problems, we can enhance the application of MAS in plant breeding, which, in turn, may help us in increasing yield, which subsequently may help in bridging the gap between demand and supply of food for the continuously growing population.

7.
Phytochemistry ; 175: 112365, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32247721

RESUMO

Mutation (p.LEU112PRO) in "carotenoid cleavage dioxygenase 8" (CCD8) protein increases tiller formation in rice plants by cross-talking with auxin and cytokinins. However, owing to the nonexistence of a "three-dimension" structure of CCD8, detail information about its structure and function remain elusive until date. Hence, in the present study, computational approaches were adopted to predict "three-dimensional" (3D) structure of CCD8 protein through comparative modeling techniques and to study the effect of mutation (p.LEU112PRO) on its function as well as architecture through "molecular dynamics" simulation studies. The obtained result reveals that wild-type CCD8 protein is made up of 10 α-helix and 25 ß-strands while mutant CCD8 is made up of 11 α-helix and 24 ß-strands. Further, molecular docking studies reveals that the wild-type has a better binding affinity with auxin and cytokinin in comparison to mutant. Subsequent molecular dynamics simulation of these four complexes, separately, reveals that the movement of both wild-type as well as mutant CCD8 get reduced after binding with auxin, which in turn prevent auxin transport out of the bud and increases tiller number. However, when cytokinin binds with wild-type and mutant CCD8, it inhibits and enhance CCD8 activity, respectively. As cytokinin positively regulates tiller number formation, enhance activity of mutant CCD8 after binding with cytokinin might be the main reason for more tiller number in mutant than wild-type plant. In the near future, mutant CCD8 along with auxin and cytokinin may be utilized for increasing grain yield in rice plants.


Assuntos
Dioxigenases , Oryza , Carotenoides , Citocininas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Simulação de Acoplamento Molecular , Mutação , Proteínas de Plantas
8.
Genomics ; 112(3): 2647-2657, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087244

RESUMO

Rice serves as one of the essential staple food for half of the global human population. However, due to rapid human population growth, there is an increase in food demand across the globe. Thus, to lessen the gap between food demand and supply, there is an urgent requirement for grain yield enhancement in various important cereals crops, including rice. In the present study, the authors attempted to characterize haplotypes and single nucleotide polymorphisms associated with Gn1a for high grain number formation in rice plants. Result obtained reveals that high grain number gene sequences are under balancing selection and four high grain number specific missense SNPs decreases the stability of Gn1a. Earlier studies have also suggested that decreases Gn1a expression causes cytokinin accretion in inflorescence meristems, which in turn led to increase in grain yield. Hence, these four SNPs may be utilized for increasing grain yield in rice plants.


Assuntos
Grão Comestível/genética , Oryza/genética , Oxirredutases/genética , Polimorfismo de Nucleotídeo Único , Grão Comestível/crescimento & desenvolvimento , Ontologia Genética , Haplótipos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Alinhamento de Sequência
9.
J Biomol Struct Dyn ; 38(4): 1158-1167, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30896372

RESUMO

Cytokinin oxidase/dehydrogenase (CKX) is the only known enzyme associated with irreversible degradation of cytokinins in plants. CKX2 contains flavin adenine dinucleotide (FAD) domain. Earlier studies utilising antisense & hpRNAi suppression techniques in mutant/transgenic rice plants revealed that when CKX2 binds with FAD, CKX2 expression reduces, which in turn causes cytokinin aggregation in inflorescence meristem that subsequently enhances both branches and grain number resulting in increased grain yield. Owing to the non-existence of complete three-dimensional structure of CKX2, insight into the structure and function of CKX2 and its relationship with its cofactor FAD is still a topic of debate. In the present study, computational approach was employed to estimate the three-dimensional structure of CKX2 through comparative modelling approach. Later, CKX2 and FAD interaction study was performed to understand the underlying mechanism involved with reduced expression of CKX2. Molecular dynamic simulation studies of both CKX2 and CKX-FAD complex revealed that after binding with FAD, CKX2 experienced increased pressure and reduced RMSD, potential energy and free energy landscape energy, which in turn lessen anti-correlation between almost all α and ß strands and random motion of C-α, subsequently reducing CKX2 expression. In near future, these information can be utilised for increasing rice yield under irrigated field condition by introgression of Gn1a gene through marker assisted back-crossing breeding. AbbreviationsGROMACSGROningen MAchine for Chemical SimulationsNPTConstant Number of Particles, Volume and TemperatureRMSDRoot Mean Square DeviationRMSFRoot Mean Square FluctuationsQTLquantitative trait lociFADflavin adenine dinucleotideNVTConstant Number of Particles, Pressure and TemperatureLINCSLinear Constraint SolverCKX2Cytokinin oxidase/dehydrogenase 2MM/PBSAMolecular Mechanics/Poisson-Boltzmann surface areaSDFStructure Data FileCommunicated by Ramaswamy H. Sarma.


Assuntos
Produção Agrícola , Modelos Moleculares , Conformação Molecular , Oryza/enzimologia , Oxirredutases/química , Fenômenos Químicos , Sequência Conservada , Flavina-Adenina Dinucleotídeo/química , Ligantes , Oxirredutases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
10.
Amino Acids ; 51(5): 839-853, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900088

RESUMO

Rice serves as the major food for almost half of the world population. Because of its origin in the tropical and subtropical area, rice is more sensitive towards cold stress. Three homologs of DREB1, namely DREB1A, DREB1B and DREB1C are induced Queryduring cold stress and after binding with GCC-box in the promoter region of the target gene, they enhance cold tolerance in rice plants. Though the majority of DREBs bind GCC-box, the degree of activation varies among DREBs. The protein encoded via these three transcription factors contains a common domain, namely AP2/ERF. In silico method was utilised to predict 3D structure of each AP2/ERF domain. The molecular dynamic analysis suggests, under the normal environmental condition, in each AP2/ERF domain, a positive correlation exists between ß-strands and the movement of C-α is constrained. However, during cold stress, when AP2/ERF domain binds with GCC-box present in the promoter region of the target gene, mean pressure of each three AP2/ERF domain gets lowered and final potential energy increases. A positive correlation between ß-strands gets disrupted and C-α experiences random movement suggesting enhanced activity of DREB1A, DREB1B and DREB1C during cold stress and enhancement of cold tolerance in plants. Further, MM/PBSA calculations for protein-DNA affinities reveal that, due to lack of α2 in DREB1C, the binding affinity of GCC-box with AP2/ERF domain of DREB1A > DREB1B > DREB1C. Thus, due to a better binding affinity with GCC-box, DREB1A and DREB1B can be utilised in near future for increasing cold tolerance of rice plant and increasing yield.


Assuntos
Temperatura Baixa , Biologia Computacional/métodos , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Estresse Fisiológico , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Simulação de Dinâmica Molecular , Oryza/genética , Proteínas de Plantas/genética , Homologia de Sequência , Relação Estrutura-Atividade
11.
J Mol Graph Model ; 88: 209-220, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30743158

RESUMO

In silico approach was utilised to identify differentially expressed key hub genes during BPH infestation on Bt rice plant, under laboratory conditions. Re-analysis of GSE74745 data with in-house R scripts and STRING database reveals that only 5 key hub genes, namely Os05g0176100, Os06g0683200, Os07g0208500, Os07g0252400 and Os07g0424400, belonging to cellulose synthase family, are differentially expressed and have confidence score ≥0.9 among themselves. Conserve domain analysis of all proteins encoded via these 5 key hub genes reveals that they have a common cellulose synthase domain, in which "Plant-Conserved Region" (PCR) is highly conserved. After binding with other domains of cellulose synthase proteins or other accessory proteins, like sucrose synthase, PCR serves as a metabolic channel to deliver UDP-Glucose, which is the main substrate for cellulose synthesis, into the active site of cellulose synthase and initiate cellulose synthesis. Simulation study of recently solved topological model of PCR [PDB ID: 5JNP] and molecular docking studies of PCR with UDP-glucose reveals that, during BPH infestation, in nearby phloem tissue where BPH suck sap, there is an increase interaction of UDP-glucose with PCR and other accessory proteins which in turn increases both the stability of PCR and the production of cellulose, finally causing callose deposition at that site and hence causing longer nymphal developmental period and lower fertility of BPH infested on Bt rice. In near future, these differentially identified 5 hub genes could be possible targets for controlling BPH infestation in rice plant under field conditions and increasing rice yield globally.


Assuntos
Resistência à Doença/genética , Insetos , Modelos Biológicos , Oryza/parasitologia , Doenças das Plantas/parasitologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Humanos , Oryza/genética , Doenças das Plantas/genética , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
12.
J Biomol Struct Dyn ; 37(7): 1649-1665, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29633905

RESUMO

Brown plant hopper (BPH) is one of the major destructive insect pests of rice, causing severe yield loss. Thirty-two BPH resistance genes have been identified in cultivated and wild species of rice Although, molecular mechanism of rice plant resistance against BPH studied through map-based cloning, due to non-existence of NMR/crystal structures of Bph14 protein, recognition of leucine-rich repeat (LRR) domain and its interaction with different ligands are poorly understood. Thus, in the present study, in silico approach was adopted to predict three-dimensional structure of LRR domain of Bph14 using comparative modelling approach followed by interaction study with jasmonic and salicylic acids. LRR domain along with LRR-jasmonic and salicylic acid complexes were subjected to dynamic simulation using GROMACS, individually, for energy minimisation and refinement of the structure. Final binding energy of jasmonic and salicylic acid with LRR domain was calculated using MM/PBSA. Free-energy landscape analysis revealed that overall stability of LRR domain of Bph14 is not much affected after forming complex with jasmonic and salicylic acid. MM/PBSA analysis revealed that binding affinities of LRR domain towards salicylic acid is higher as compared to jasmonic acid. Interaction study of LRR domain with salicylic acid and jasmonic acid reveals that THR987 of LRR form hydrogen bond with both complexes. Thus, THR987 plays active role in the Bph14 and phytochemical interaction for inducing resistance in rice plant against BPH. In future, Bph14 gene and phytochemicals could be used in BPH management and development of novel resistant varieties for increasing rice yield.


Assuntos
Modelos Moleculares , Oryza , Proteínas de Plantas/química , Conformação Proteica , Algoritmos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Fenômenos Químicos , Ciclopentanos/química , Resistência à Doença , Ligação de Hidrogênio , Insetos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oryza/metabolismo , Oryza/parasitologia , Oxilipinas/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ácido Salicílico/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA