Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 262(Pt 1): 119815, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159778

RESUMO

Bromate (BrO3-)-induced pharmaceutical and personal care products (PPCPs) oxidation is enhanced in freezing systems. Reduced forms of metals are widely present, often coexisting with various contaminants. However, their effects on the interaction of PPCPs with BrO3- in ice in cold regions may have been overlooked. Herein we investigated the effects of representative reducing metal Cr(III) on the interaction between the representative PPCP carbamazepine (CBZ) and BrO3- in the freezing system. Our findings demonstrated that the degradation rate constants of CBZ by BrO3- and Cr(III) were 29.4%-60.3% lower than those by BrO3- in ice, revealing the inhibition of Cr(III) on CBZ degradation by BrO3- in ice. In BrO3-/freezing/sunlight system, BrO3- contributed 62.8% to CBZ degradation. In BrO3-/Cr(III)/freezing/sunlight system, Cr(III) promoted the generation of hydroxyl radical (·OH), leading to 51.0% contribution of ·OH to CBZ degradation. Oxidants were consumed by Cr(III) to form Cr(VI) rather than reacting with CBZ, thereby decreasing CBZ degradation by BrO3- in ice. Due to sunlight-induced Cr(VI) reduction in ice, only 0.3% of Cr(III) was converted to Cr(VI) in BrO3-/Cr(III)/freezing/sunlight system. BrO3--induced CBZ degradation rate in ice decreased in order of Fe(II), Cr(III), and Mn(II), which was due to the different reducing capabilities. An effective reduction in comprehensive toxicity of systems followed the freezing-sunlight process, even in the presence of Cr(III). This work sheds new light on the environmental behaviors and fate of PPCPs, brominated disinfection by-products, and reducing metals during seasonal freezing.

2.
Environ Res ; 251(Pt 1): 118650, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458586

RESUMO

The ferrihydrite-catalyzed heterogeneous photo-Fenton reaction shows great potential for environmental remediation of fluoroquinolone (FQs) antibiotics. The degradation of enoxacin, a model of FQ antibiotics, was studied by a batch experiment and theoretical calculation. The results revealed that the degradation efficiency of enoxacin reached 89.7% at pH 3. The hydroxyl radical (∙OH) had a significant impact on the degradation process, with a cumulative concentration of 43.9 µmol L-1 at pH 3. Photogenerated holes and electrons participated in the generation of ∙OH. Eleven degradation products of enoxacin were identified, with the main degradation pathways being defluorination, quinolone ring and piperazine ring cleavage and oxidation. These findings indicate that the ferrihydrite-catalyzed photo-Fenton process is a valid way for treating water contaminated with FQ antibiotics.


Assuntos
Enoxacino , Compostos Férricos , Peróxido de Hidrogênio , Ferro , Poluentes Químicos da Água , Compostos Férricos/química , Poluentes Químicos da Água/química , Ferro/química , Enoxacino/química , Catálise , Peróxido de Hidrogênio/química , Antibacterianos/química
3.
Sci Total Environ ; 923: 171376, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432388

RESUMO

Seasonal freezing of waters occurs during winter in cold regions. Bromate ( [Formula: see text] ) is a disinfection by-product generated during water treatment, its interaction with emerging contaminants may be affected by freezing. Nitrite ( [Formula: see text] ) is widely distributed in the environment, whereas its effect on the interaction of emerging contaminants and [Formula: see text] in ice may have been overlooked. Herein carbamazepine (CBZ) was selected as a model emerging contaminant to elucidate the role of reactive nitrogen species (RNS) in contaminant transformation during the reduction of [Formula: see text] by [Formula: see text] in ice. Results indicated that freezing significantly enhanced CBZ degradation by [Formula: see text] . The CBZ degradation by [Formula: see text] and [Formula: see text] in ice was 25.4 %-27.8 % higher than that by [Formula: see text] . Contributions of hydroxyl radical (•OH), bromine radical (•Br), and RNS to CBZ degradation in freezing/dark or sunlight systems were 8.1 % or 15.9 %, 25.4 % or 7.2 %, and 66.5 % or 76.9 %, respectively. Most CBZ was degraded by RNS generated during the reduction of [Formula: see text] by [Formula: see text] in ice, resulting in 16.4 % of transformation products being nitro-containing byproducts. Hybrid toxicity of CBZ/ [Formula: see text] / [Formula: see text] system was reduced effectively after the freezing-sunlight process. This study can provide new insights into the environmental fate of emerging contaminants, [Formula: see text] , and [Formula: see text] in cold regions.

4.
Sci Total Environ ; 913: 169797, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181939

RESUMO

Ferrihydrite acts as a natural reservoir for nutrient elements, organic matter, and coexisting pollutants through adsorption and coprecipitation. However, the degradation of emerging fluoroquinolone antibiotics during the transformation of ferrihydrite coprecipitates, especially those with various dissociated species, remains insufficiently explored. In this study, Enoxacin (ENO), employed as a model antibiotic, was introduced to prepare ferrihydrite-ENO coprecipitates. The influence of coprecipitated ENO on the transformation of the ferrihydrite-ENO coprecipitate was investigated across different pH conditions. The results revealed that ferrihydrite-ENO coprecipitates thermodynamically transformed into more stable goethite and/or hematite under all pH conditions. In neutral and alkaline conditions, ENO promoted the transformation of coprecipitates into goethite while hindering hematite formation. Conversely, under acidic conditions, ENO directly obstructed the transformation of coprecipitates into hematite. Different dissociated species of ENO displayed distinct degradation pathways. The cationic form of ENO exhibited a greater tendency for hydroxylation and defluorination, while the zwitterion form leaned toward piperazine ring oxidation, with limited preference for quinolone ring oxidation. The anionic form of ENO exhibited the fastest degradation rate. It is essential to emphasize that the toxicity of the degradation products was intricately connected to the specific reaction sites and the functional groups they acquired post-oxidation. These findings offer fresh insights into the role of antibiotics in coprecipitation, the transformation of ferrihydrite coprecipitates, and the fate of coexisting antibiotics.


Assuntos
Antibacterianos , Enoxacino , Compostos de Ferro , Compostos Férricos , Minerais , Oxirredução
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123841, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38241933

RESUMO

Due to the very important role in physiological process, a simple and sensitive hemin detection method is necessarily required. Biomass-based carbonized polymer dots (CPDs) have been widely studied especially as fluorescence probe owing to the advantages of low toxicity and the variety of fluorescence color, yet there are still challenges in developing their multi-color emission property from the same raw materials. In this work, red, white and blue emissive CPDs derived from chlorophyll have been synthesized via hydrothermal method. Then white-emitted CPDs (white-CPDs) with the Commission International d'Eclairage (CIE) coordinates at (0.34, 0.32) were used to develop a fluorescence quenched sensing system for hemin determination. There is a good linear relationship between (F0-F)/F0 and concentration of hemin in the range of 0.1-0.95 µM with a detection limit of 0.043 µM, and the quenching mechanism was considered to be caused by inner filter effect (IFE). Moreover, it has been successfully used for hemin detection in serum and also for visual determination, which indicating great potential in applications of disease diagnoses and trace identification.


Assuntos
Pontos Quânticos , Hemina , Polímeros , Corantes Fluorescentes , Espectrometria de Fluorescência/métodos , Carbono
6.
J Hazard Mater ; 466: 133533, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286046

RESUMO

Antibiotic resistance poses a global environmental challenge that jeopardizes human health and ecosystem stability. Antibiotic resistant bacteria (ARB) significantly promote the spreading and diffusion of antibiotic resistance. This study investigated the efficiency and mechanism of inactivating tetracycline-resistant Escherichia coli (TR E. coli) using Fe3O4 @MoS2 activated persulfate (Fe3O4 @MoS2/PS). Under optimized conditions (200 mg/L Fe3O4 @MoS2, 4 mM PS, 35 °C), TR E. coli (∼7.5 log CFU/mL) could be fully inactivated within 20 min. The primary reactive oxygen species (ROS) responsible for TR E. coli inactivation in the Fe3O4 @MoS2/PS system were hydroxyl radicals (•OH) and superoxide radicals (•O2-). Remarkably, the efflux pump protein was targeted and damaged by the generated ROS during the inactivation process, resulting in cell membrane rupture and efflux of cell content. Additionally, the horizontal transmission ability of residual antibiotic resistance genes (ARGs) harboring in the TR E. coli was also reduced after the inactivation treatment. This study offers an efficient approach for TR E. coli inactivation and substantial mitigation of antibiotic resistance dissemination risk.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacologia , Escherichia coli/genética , Molibdênio , Espécies Reativas de Oxigênio , Ecossistema , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética , Tetraciclina , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
7.
J Hazard Mater ; 458: 132063, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37463559

RESUMO

Ice formation in reservoirs could promote the accumulation of antibiotics in fish, potentially leading to elevated concentrations in fish muscles, kidneys, and livers. However, for the seasonal ice-sealed reservoirs, antibiotic sampling and detecting conditions in water and fish are normally limited by the ice cover. Additionally, previous studies on the prediction of antibiotics accumulated in seasonal ice-sealed reservoir fish are scarce. This study presents a coupled model incorporating a multimedia fate model and a bioaccumulation model to predict antibiotic fate in water and the muscles, kidneys, and livers of fish in seasonal ice-sealed reservoirs. Prediction concentrations of florfenicol were higher than those of ofloxacin and norfloxacin in both water and fish from the seasonal ice-sealed reservoir. Log bioaccumulation factors of antibiotics in Cyprinus carpio and Hypophthalmichthys nobilis in January 2021 were higher than those in October 2020 by 21.5% and 12.6%, respectively. Antibiotics mean transfer fluxes from water to fish muscles, kidneys, and livers increased owing to the reservoir ice-cover formation date advancing by 13.0%, 77.1%, and 61.0%, respectively. This work provides a modeling tool for investigating the fate and mass transfer flux of antibiotics in biological and environmental phases in seasonal ice-sealed reservoirs.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Água , Fluoroquinolonas , Gelo , Bioacumulação , Multimídia , Estações do Ano , Antibacterianos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
8.
Toxics ; 11(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37505569

RESUMO

Over the past few decades, acetaminophen (ACT), a typical nonsteroidal anti-inflammatory drug (NSAID), has gained global usage, positioning itself as one of the most extensively consumed medications. However, the incomplete metabolism of ACT leads to a substantial discharge into the environment, classifying it as an environmental contaminant with detrimental effects on non-target organisms. Various wastewater treatment technologies have been developed for ACT removal to mitigate its potential environmental risk. Particularly, photocatalytic technology has garnered significant attention as it exhibits high efficiency in oxidizing and degrading a wide range of organic pollutants. This comprehensive review aims to systematically examine and discuss the application of photocatalytic technology for the removal of ACT from aqueous environments. Additionally, the study provides a detailed overview of the limitations associated with the photocatalytic degradation of ACT in practical applications, along with effective strategies to address these challenges.

9.
Chemosphere ; 338: 139524, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37467849

RESUMO

Water, sediments, and biofilms are the typical microbial carriers in natural water environments. However, comparative analysis of the distribution of bacterial and fungal communities in different carriers within the same habitat is relatively lacking. Therefore, this study employed 16 S and ITS rRNA gene sequencing to identify bacterial and fungal community structures in water, sediments, and biofilm. The results show that (1) the OTUs numbers revealed that the bacterial abundance, at the levels of species, genus, and family, followed the order of sediments > water > biofilms, while the fungal abundance order was water > sediments > biofilms. In addition, bacteria were mainly present in sediments, while fungi were mainly present in water. (2) The α diversity index (Shannon, ACE, Simpson, and Chao1) order, for bacteria was: sediments > water > biofilms, indicating that the diversity and homogeneity of bacteria in sediments were relatively higher; for fungi was: water > sediments > biofilms, indicating that the diversity and abundance of fungi in water were high. (3) The core phylum of bacterial in the water, sediments, and biofilms was Cyanobacteria (31.3-46.1%) and Actinobacteria (27.6-36.1%); Proteobacteria (35.0-41.8%), Cyanobacteria (14.7-36.6%); and Proteobacteria (63.3-69.2%), respectively. (4) The mainly colonized fungal phyla in biofilms in the water, sediments, and biofilms were Basidiomycota (29.3-38.7%) and Ascomycota (16.2-27.7%); Zygomycota (13.1-17.5%), Basidiomycota (5.6-17.6%); and Zygomycota (23.8-44.2%). (5) There were significant species differences in bacterial and fungal communities in water, sediments, and biofilm by NMDS analysis. Findings are useful for guiding significance for the Biogeochemical cycle of elements, the environmental fate of pollutants, and the study of water ecosystems.


Assuntos
Ascomicetos , Cianobactérias , Água , Ecossistema , Rios , Biofilmes , Fungos/genética , China , Sedimentos Geológicos/química
10.
Sci Total Environ ; 894: 165014, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343881

RESUMO

Ice plays a crucial role in contaminant transformation in seasonally ice-covered waters. In this study, the characteristics and mechanisms of an emerging contaminant oxcarbazepine (OXC) degradation by a disinfection by-product bromate ( [Formula: see text] ) in ice were explored via combined experiments and theoretical calculations. Results showed that 74.0 % and 86.4 % of OXC was degraded by [Formula: see text] in ice after 140 min in dark and 120 min under solar irradiation, respectively, while the reaction was negligible in water. The oxidation-reduction potential of [Formula: see text] solution at 1000 µmol L-1 was 56.9 % higher than that at 50 µmol L-1. The oxidation-reduction potential of [Formula: see text] solution at pH 2 was 14.8 %-109.5 % higher than those at other pH values. Enhanced OXC degradation by [Formula: see text] in ice could be attributed to increased [Formula: see text] oxidation capacity resulting from locally elevated [Formula: see text] and H+ concentrations. Hypobromous acid (HOBr), •OH, and Br• generated by direct photolysis under solar irradiation further promoted the OXC degradation in ice. Br• formed by the direct photolysis of accumulated HOBr under solar irradiation caused the generation of bromine-containing degradation products. Bromine-containing degradation products possessed higher potential toxicities, which could contribute to increase the secondary pollution of water environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA