Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(1): 259-266, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542060

RESUMO

Films with micro/nanostructures that show high wicking performance are promising in water desalination, atmospheric water harvesting, and thermal energy management systems. Here, we use a facile bubble-induced self-assembly method to directly generate films with a nanoengineered crack-like surface on the substrate during bubble growth when self-dispersible graphene quantum dot (GQD) nanofluid is used as the working medium. The crack-like micro/nanostructure, which is generated due to the thermal stress, enables the GQD film to not only have superior capillary wicking performance but also provide many additional nucleation sites. The film demonstrates enhanced phase change-based heat transfer performance, with a simultaneous enhancement of the critical heat flux and heat transfer coefficient up to 169% and 135% over a smooth substrate, respectively. Additionally, the GQD film with high stability enables a performance improvement in the concentration ratio and electrical efficiency of concentrated photovoltaics in an analytical study, which is promising for high-power thermal energy management applications.

2.
Front Endocrinol (Lausanne) ; 13: 1092764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36844372

RESUMO

Objective: It is generally believed that gait characteristics of diabetic neuropathic patients differ from those of non-diabetic ones. However, it is still unclear how the abnormal foot sensation influences the gait during walking in type 2 diabetes mellitus (T2DM). For the purpose of gaining a better insight into the alterations of detailed gait parameters and figuring out important aspects in the gait indexes by peripheral neuropathy in elder T2DM patients, we compared the gait features in participants with normal glucose tolerance (NGT) controls and diabetic individuals complicated by peripheral neuropathy or not. Subjects and methods: Gait parameters were observed during the 10-m walk on flat land among different conditions of diabetes in 1,741 participants from three clinical centers. Subjects were divided into four groups: persons with NGT were taken as the control group; patients with T2DM included three subgroups: DM control (no chronic complications), DM-DPN (DM complicated by only peripheral neuropathy), and DM-DPN+LEAD (DM complicated by both neuropathy and artery disease). The clinical characteristics and gait parameters were assessed and compared among these four groups. Analyses of variance were employed to verify possible differences of gait parameters between groups and conditions. Stepwise multivariate regression analysis was performed to reveal possible predictors of gait deficits. Receiver operating characteristic (ROC) curve analysis was employed to find any discriminatory power of diabetic peripheral neuropathy (DPN) for the step time. Results: In participants burdened with DPN, whether complicated by lower extremity arterial disease (LEAD) or not, step time increased sharply (p < 0.05). Stepwise multivariate regression models showed that independent variables of gait abnormality were sex, age, leg length, vibration perception threshold (VPT), and ankle-brachial index (ABI) (p < 0.01). Meanwhile, VPT was a significant independent predictor of step time, spatiotemporal variability (SDA), and temporal variability (SDB) (p < 0.05). ROC curve analysis was explored to find the discriminatory power of DPN for the occurrence of increased step time. The area under the curve (AUC) value was 0.608 (95% CI: 0.562-0.654, p < 0.01), and the cutoff point was 538.41 ms accompanied by a higher VPT. A significant positive association was observed between increased step time and the highest VPT group [odds ratio (OR) = 1.83, 95% CI: 1.32-2.55, p< 0.01]. In female patients, this OR value elevated to 2.16 (95% CI: 1.25-3.73, p< 0.01). Conclusions: In addition to sex, age, and leg length, VPT was a distinct factor that associated with altered gait parameters. DPN is associated with increased step time, and the step time increases with worsening VPT in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Doenças Vasculares , Humanos , Feminino , Idoso , Diabetes Mellitus Tipo 2/complicações , Vibração , Percepção , Neuropatias Diabéticas/complicações , Sensação , Marcha , Doenças Vasculares/complicações
3.
Open Med (Wars) ; 16(1): 68-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33385064

RESUMO

BACKGROUND: Tamoxifen (TAMR) resistance remains a massive obstacle for breast cancer (BC) management. The precise parts of long non-coding RNA ataxin 8 opposite strand (ATXN8OS) in BC TAMR resistance have not been defined. METHODS: The levels of ATXN8OS, vasodilator-stimulated phosphoprotein (VASP), and miR-16-5p were assessed by quantitative real-time polymerase chain reaction or western blot. Colony formation and cell viability were analyzed by MTT and colony formation assays, respectively. Targeted interactions among miR-16-5p, ATXN8OS, and VASP were confirmed by dual-luciferase reporter assay. Animal studies were performed to observe the role of ATXN8OS in TAMR sensitivity in vivo. RESULTS: ATXN8OS expression was increased in BC tissues and cells. ATXN8OS depletion promoted BC cell sensitivity to TAMR. ATXN8OS sequestered miR-16-5p by directly binding to miR-16-5p. The promotional effect of ATXN8OS knockdown on BC cell TAMR sensitivity was mediated by miR-16-5p. VASP was a direct target of miR-16-5p, and miR-16-5p overexpression enhanced TAMR sensitivity by VASP. Moreover, ATXN8OS regulated VASP expression by acting as a miR-16-5p sponge. In addition, ATXN8OS knockdown augmented BC TAMR sensitivity in vivo. CONCLUSION: ATXN8OS knockdown enhanced BC TAMR sensitivity partially through the miR-16-5p/VASP axis, highlighting a potential therapeutic target for improving the clinical benefits of TAMR treatment in BC patients.

4.
Sci Rep ; 4: 4303, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24603362

RESUMO

This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...