Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 12(19): 9248-9260, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606540

RESUMO

Pathogenesis of C. difficile in the intestine is associated with the secretion of toxins which can damage the intestinal epithelial layer and result in diseases such as diarrhoea. Treatment for C. difficile infections consists of antibiotics which, however, have non-specific microbiocidal effects and may cause intestinal dysbiosis which results in subsequent health issues. Therefore, alternative treatments to C. difficile infections are required. We investigated whether different black soldier fly- and mealworm-derived fractions, after applying the INFOGEST digestion protocol, could counteract C. difficile toxin A-mediated barrier damage of small intestinal Caco-2 cells. Treatment and pre-treatment with insect-derived fractions significantly (p < 0.05) mitigated the decrease of the transepithelial electrical resistance (TEER) of Caco-2 cells induced by C. difficile toxin A. In relation to these effects, RNA sequencing data showed an increased transcription of cell junctional and proliferation protein genes in Caco-2 cells. Furthermore, the transcription of genes regulating immune signalling was also increased. To identify whether this resulted in immune activation we used a Caco-2/THP-1 co-culture model where the cells were only separated by a permeable membrane. However, the insect-derived fractions did not change the basolateral secreted IL-8 levels in this model. To conclude, our findings suggest that black soldier fly- and mealworm-derived fractions can attenuate C. difficile induced intestinal barrier disruption and they might be promising tools to reduce the symptoms of C. difficile infections.


Assuntos
Toxinas Bacterianas/toxicidade , Proliferação de Células/genética , Enterotoxinas/toxicidade , Insetos , Junções Intercelulares/genética , Mucosa Intestinal/fisiologia , Intestino Delgado/citologia , Transcrição Gênica , Animais , Células CACO-2 , Clostridioides difficile , Técnicas de Cocultura , Besouros , Dípteros , Células Epiteliais/fisiologia , Humanos , Imunidade/genética , Imunomodulação , Proteínas de Insetos/farmacologia , Mucosa Intestinal/citologia , Intestino Delgado/fisiologia , Macrófagos , RNA-Seq , Células THP-1
2.
Mol Nutr Food Res ; 64(23): e2000324, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33067879

RESUMO

SCOPE: Chitin, the most abundant polysaccharide found in nature after cellulose, is known for its ability to support wound healing and to lower plasma-oxidized low-density lipoprotein (LDL) levels. Studies have also revealed immunomodulatory potential but contradicting results are often impossible to coalesce through usage of chitin of different or unknown physicochemical consistency. In addition, only a limited set of cellular models have been used to test the bioactivity of chitin. METHODS AND RESULTS: Chitin is investigated with well-defined physicochemical consistency for its immunomodulatory potency using THP-1 macrophages, impact on intestinal epithelial barrier using Caco-2 cells, and fermentation by fecal-derived microbiota. Results show that chitin with a degree of acetylation (DA) of ≈83%, regardless of size, does not affect the intestinal epithelial barrier integrity. Large-sized chitin significantly increases acetic acid production by gut microbiota without altering the composition. Exposure of small-sized chitin to THP-1 macrophages lead to significantly increased secretion of IL-1ß, IL-8, IL-10, and CXCL10 in a multi-receptor and clathrin-mediated endocytosis dependent manner. CONCLUSIONS: These findings indicate that small-sized chitin does not harm the intestinal barrier nor affects SCFA secretion and microbiota composition, but does impact immune activity which could be beneficial to subjects in need of immune support or activation.

3.
Asian Pac J Cancer Prev ; 15(20): 8529-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25374164

RESUMO

According to the China tumor registry 2013 annual report , breast cancer, lung cancer, and ovarian cancer are three common cancers in China nowadays, with high mortality due to the absence of early diagnosis technology. However, proteomics has been widespreadly implanted into every field of life science and medicine as an important part of post-genomics era research. The development of theory and technology in proteomics has provided new ideas and research fields for cancer research. Proteomics can be used not only for elucidating the mechanisms of carcinogenesis focussing on whole proteins of the tissue or cell, but also seeking the biomarkers for diagnosis and therapy of cancer. In this review, we introduce proteomics principles, covering current technology used in exploring early diagnosis biomarkers of breast cancer, lung cancer and ovarian cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Ovarianas/diagnóstico , Proteômica/métodos , Neoplasias da Mama/genética , China , Feminino , Humanos , Neoplasias Pulmonares/genética , Masculino , Neoplasias Ovarianas/genética , Pesquisa Qualitativa , Sistema de Registros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...