Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Org Lett ; 26(15): 3086-3090, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38591933

RESUMO

An organocatalytic enantioselective alkylation of α,α-disubstituted aldehydes with 3-bromooxindoles is reported. Enantioenriched oxindoles with vicinal quaternary stereocenters are accessed by an asymmetric conjugate addition process of branched aldehydes with o-azaxylylene intermediates (indol-2-ones). Key to the success of highly diastereo- and enantioselective transformations is the combined use of a triphenylsilyl-protected ß-amino alcohol catalyst derived from the spiropyrrolidine scaffold and 3,5-dinitrobenzoic acid. This study also presents a rare example of aldehyde alkylation with the formation of consecutive quaternary stereocenters.

2.
Sci Bull (Beijing) ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485624

RESUMO

The Zr(IV) ions are easily hydrolyzed to form oxides, which severely limits the discovery of new structures and applications of Zr-based compounds. In this work, three ferrocene (Fc)-functionalized Zr-oxo clusters (ZrOCs), Zr9Fc6, Zr10Fc6 and Zr12Fc8 were synthesized through inhibiting the hydrolysis of Zr(IV) ions, which show increased nuclearity and regular structural variation. More importantly, these Fc-functionalized ZrOCs were used as heterogeneous catalysts for the transfer hydrogenation of levulinic acid (LA) and phenol oxidation reactions for the first time, and displayed outstanding catalytic activity. In particular, Zr12Fc8 with the largest number of Zr active sites and Fc groups can achieve > 95% yield for LA-to-γ-valerolactone within 4 h (130 °C) and > 98% yield for 2,3,6-trimethylphenol-to-2,3,5-trimethyl-p-benzoquinone within 30 min (80 °C), showing the best catalytic performance. Catalytic characterization combined with theory calculations reveal that in the Fc-functionalized ZrOCs, the Zr active sites could serve as substrate adsorption sites, while the Fc groups could act as hydrogen transfer reagent or Fenton reagent, and thus achieve effectively intramolecular metal-ligand synergistic catalysis. This work develops functionalized ZrOCs as catalysts for thermal-triggered redox reactions.

3.
ChemSusChem ; 17(9): e202301710, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38407568

RESUMO

Lithium-ion batteries, with high energy density and long cycle life, have become the battery of choice for most vehicles and portable electronic devices; however, energy density, safety and cycle life require further improvements. Single-functional group electrolyte additives are very limited in practical applications, a ternary polymer bifunctional electrolyte additive copolymer (acrylonitrile-butyl hexafluoro methacrylate- poly (ethylene glycol) methacrylate- methyl ether) (PMANHF) was synthesized by free radical polymerization of acrylonitrile, 2, 2, 3, 4, 4, 4-hexafluorobutyl methacrylate and poly (ethylene glycol) methyl ether methacrylate. A series of characterizations show that in Li metal anodes, the preferential reduction of PMANHF is conducive to the formation of a uniform and stable solid electrolyte interphase layer, and Li deposition is uniform and dense. At the NCM811 cathode, a film composed of LiF- and Li3N-rich is formed at the cathode-electrolyte interface, mitigating the side reaction at the interface. At 1.0 mA cm-2, the Li/Li cell can be stabilized for 1000 cycles. In addition, the Li/NCM811 cell can stabilize 200 cycles with a cathode capacity of 153.7 mAh g-1, with the capacity retention of 89.93 %, at a negative/positive capacity ratio of 2.5. This study brings to light essential ideas for the fabrication of additives for lithium-metal batteries.

4.
Adv Mater ; 36(15): e2310061, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227292

RESUMO

Integrating the advantages of homogeneous and heterogeneous catalysis has proved to be an optimal strategy for developing catalytic systems with high efficiency, selectivity, and recoverability. Supramolecular metal-organic cages (MOCs), assembled by the coordination of metal ions with organic linkers into discrete molecules, have performed solvent processability due to their tunable packing modes, endowing them with the potential to act as homogeneous or heterogeneous catalysts in different solvent systems. Here, the design and synthesis of a series of stable {Cu3} cluster-based tetrahedral MOCs with varied packing structures are reported. These MOCs, as homogeneous catalysts, not only show high catalytic activity and selectivity regardless of substrate size during the CO2 cycloaddition reaction, but also can be easily recovered from the reaction media through separating products and co-catalysts by one-step work-up. This is because that these MOCs have varied solubilities in different solvents due to the tunable packing of MOCs in the solid state. Moreover, the entire catalytic reaction system is very clean, and the purity of cyclic carbonates is as high as 97% without further purification. This work provides a unique strategy for developing novel supramolecular catalysts that can be used for homogeneous catalysis and recycled in a heterogeneous manner.

5.
Angew Chem Int Ed Engl ; 63(11): e202320036, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38191990

RESUMO

The striking aesthetic appeal of fullerene-like clusters has captured the interest of researchers. Nevertheless, the assembly of fullerene-like polyoxovadanadate (POV) cages remains a significant challenge due to the scarcity of suitable pentagonal motif. Herein, we have successfully synthesized the first fullerene-like all-inorganic POV cage, {(V2 O)V30 Nb12 O102 (H2 O)12 } (V30 Nb12 ), by introducing Nb into the POVs. V30 Nb12 is assembled by 12 heterometallic {(Nb)V5 } pentagons through sharing V centers with Ih symmetry, reminiscent of C60 . To our knowledge, the fullerene-like V30 Nb12 not only represents the highest-nuclearity POV cage but also stands as the first niobovanadate cluster. Notably, V30 Nb12 exhibits excellent solution stability, as confirmed by ESI-MS, FT-IR and UV/Vis spectra. As there is no protection organic ligand on its outer surface, V30 Nb12 can be further modified with Cu-complexes to form a fullerene-like cluster based zigzag chain (Cu-V30 Nb12 ).

6.
Nat Commun ; 15(1): 537, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225374

RESUMO

In modern industries, the aerobic oxidation of C(sp3)-H bonds to achieve the value-added conversion of hydrocarbons requires high temperatures and pressures, which significantly increases energy consumption and capital investment. The development of a light-driven strategy, even under natural sunlight and ambient air, is therefore of great significance. Here we develop a series of hetero-motif molecular junction photocatalysts containing two bifunctional motifs. With these materials, the reduction of O2 and oxidation of C(sp3)-H bonds can be effectively accomplished, thus realizing efficient aerobic oxidation of C(sp3)-H bonds in e.g., toluene and ethylbenzene. Especially for ethylbenzene oxidation reactions, excellent catalytic capacity (861 mmol g cat-1) is observed. In addition to the direct oxidation of C(sp3)-H bonds, CeBTTD-A can also be applied to other types of aerobic oxidation reactions highlighting their potential for industrial applications.

7.
Angew Chem Int Ed Engl ; 63(14): e202318180, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38242848

RESUMO

Although photocatalytic C-H activation has been realized by using heterogeneous catalysts, most of them require high-temperature conditions to provide the energy required for C-H bond breakage. The catalysts with photothermal conversion properties can catalyze this reaction efficiently at room temperature, but so far, these catalysts have been rarely developed. Here, we construct bifunctional catalysts Rh-COF-316 and -318 to combine photosensitive covalent organic frameworks (COFs) and transition-metal catalytic moiety using a post-synthetic approach. The Rh-COF enable the heterogeneous C-H activation reaction by photothermal conversion for the first time, and exhibit excellent yields (up to 98 %) and broad scope of substrates in [4+2] annulation at room temperature, while maintaining the high stability and recyclability. Significantly, this work is the highest yield reported so far in porous materials catalyzing C(sp2)-C(sp2) formation at room temperature. The excellent performances can be attributed to the COF-316, which enhances the photothermal effect (ΔT=50.9 °C), thus accelerating C-H bond activation and the exchange of catalyst with substrates.

8.
Natl Sci Rev ; 10(11): nwad226, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37818117

RESUMO

Electrocatalytic CO2 reduction (ECR) coupled with organic oxidation is a promising strategy to produce high value-added chemicals and improve energy efficiency. However, achieving the efficient redox coupling reaction is still challenging due to the lack of suitable electrocatalysts. Herein, we designed two bifunctional polyimides-linked covalent organic frameworks (PI-COFs) through assembling phthalocyanine (Pc) and porphyrin (Por) by non-toxic hydrothermal methods in pure water to realize the above catalytic reactions. Due to the high conductivity and well-defined active sites with different chemical environments, NiPc-NiPor COF performs efficient ECR coupled with methanol oxidation reaction (MOR) (Faradaic efficiency of CO (FECO) = 98.12%, partial current densities of CO (jCO) = 6.14 mA cm-2 for ECR, FEHCOOH = 93.75%, jHCOOH = 5.81 mA cm-2 for MOR at low cell voltage (2.1 V) and remarkable long-term stability). Furthermore, experimental evidences and density functional theory (DFT) calculations demonstrate that the ECR process mainly conducts on NiPc unit with the assistance of NiPor, meanwhile, the MOR prefers NiPor conjugating with NiPc. The two units of NiPc-NiPor COF collaboratively promote the coupled oxidation-reduction reaction. For the first time, this work achieves the rational design of bifunctional COFs for coupled heterogeneous catalysis, which opens a new area for crystalline material catalysts.

9.
Front Immunol ; 14: 1187574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727787

RESUMO

Background: We aimed to use transcriptomics, bioinformatics analysis, and core gene validation to identify the core gene and potential mechanisms for electroacupuncture (EA) treatment of ulcerative colitis (UC). Materials and methods: EA was performed in mice after induction of UC via dextran sodium sulfate. Body weight, disease activity index (DAI), colon length, and hematoxylin-eosin of the colon tissue were used to evaluate the effects of EA. Mice transcriptome samples were analyzed to identify the core genes, and further verified with human transcriptome database; the ImmuCellAI database was used to analyze the relationship between the core gene and immune infiltrating cells (IICs); and immunofluorescence was used to verify the results. Results: EA could reduce DAI and histological colitis scores, increase bodyweight and colon length, and improve the expression of local and systemic proinflammatory factors in the serum and colon of UC mice. Eighteen co-differentially expressed genes were identified by joint bioinformatics analyses of mouse and human transcriptional data; Cxcl1 was the core gene. EA affected IICs by inhibiting Cxcl1 expression and regulated the polarization of macrophages by affecting the Th1 cytokine IFN-γ, inhibiting the expression of CXCL1. Conclusions: CXCL1 is the target of EA, which is associated with the underlying immune mechanism related to Th1 cytokine IFN-γ.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Humanos , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , Transcriptoma , Citocinas , Peso Corporal , Quimiocina CXCL1
10.
Angew Chem Int Ed Engl ; 62(36): e202308505, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37435787

RESUMO

Photocatalytic synthesis of hydrogen peroxide (H2 O2 ) is a potential clean method, but the long distance between the oxidation and reduction sites in photocatalysts hinders the rapid transfer of photogenerated charges, limiting the improvement of its performance. Here, a metal-organic cage photocatalyst, Co14 (L-CH3 )24 , is constructed by directly coordinating metal sites (Co sites) used for the O2 reduction reaction (ORR) with non-metallic sites (imidazole sites of ligands) used for the H2 O oxidation reaction (WOR), which shortens the transport path of photogenerated electrons and holes, and improves the transport efficiency of charges and activity of the photocatalyst. Therefore, it can be used as an efficient photocatalyst with a rate of as high as 146.6 µmol g-1 h-1 for H2 O2 production under O2 -saturated pure water without sacrificial agents. Significantly, the combination of photocatalytic experiments and theoretical calculations proves that the functionalized modification of ligands is more conducive to adsorbing key intermediates (*OH for WOR and *HOOH for ORR), resulting in better performance. This work proposed a new catalytic strategy for the first time; i.e., to build a synergistic metal-nonmetal active site in the crystalline catalyst and use the host-guest chemistry inherent in the metal-organic cage (MOC)to increase the contact between the substrate and the catalytically active site, and finally achieve efficient photocatalytic H2 O2 synthesis.

11.
Exp Biol Med (Maywood) ; 248(14): 1229-1241, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37438919

RESUMO

The aim of this study was to elucidate the key targets of acupuncture in the colon of ulcerative colitis (UC) mice model using full-length transcriptome sequencing. 2.5% dextran sodium sulfate (DSS)-induced colitis mice were treated with or without acupuncture. Intestinal pathology was observed, and full transcriptome sequencing and bioinformatic analysis were performed. The results demonstrated that acupuncture treatment reduced the UC symptoms, disease activity index score, and histological colitis score and increased body weight, colon length, and the number of intestinal goblet cells. In addition, acupuncture can also decrease the expression of necrotic biomarker phosphorylates mixed lineage kinase domain-like pseudo kinase (p-MLKL). Full-length transcriptome analysis indicated that acupuncture reversed the expression of 987 of the 1918 upregulated differentially expressed genes (DEGs), and 632 of the 1351 downregulated DEGs induced by DSS. DEGs regulated by acupuncture were mainly involved in inflammatory responses and intestinal barrier pathways. The protein-protein interaction network analysis revealed that matrix metalloproteinases (MMPs) are important genes regulated by acupuncture. Gene set enrichment analysis revealed that extracellular matrix (ECM)-receptor interaction was an important target of acupuncture. In addition, alternative splicing analysis suggested that acupuncture improved signaling pathways related to intestinal permeability, the biological processes of xenobiotics, sulfur compounds, and that monocarboxylic acids are closely associated with MMPs. Overall, our transcriptome analysis results indicate that acupuncture improves intestinal barrier function in UC through negative regulation of MMPs expression.


Assuntos
Terapia por Acupuntura , Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/terapia , Colite Ulcerativa/metabolismo , Colite/induzido quimicamente , Colo/metabolismo , Metaloproteinases da Matriz/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
12.
J Am Chem Soc ; 145(29): 16098-16108, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37428127

RESUMO

While the difference in catalytic reactivity between mono- and multimetallic sites is often attributed to more than just the number of active sites, still few catalyst model systems have been developed to explore more underlying causal factors. In this work, we have elaborately designed and constructed three stable calix[4]arene (C4A)-functionalized titanium-oxo compounds, Ti-C4A, Ti4-C4A, and Ti16-C4A, with well-defined crystal structures, increasing nuclearity, and tunable light absorption capacity and energy levels. Among them, Ti-C4A and Ti16-C4A can be taken as model catalysts to compare the differences in reactivity between mono- and multimetallic sites. Taking CO2 photoreduction as the basic catalytic reaction, both compounds can achieve CO2-to-HCOO- conversion with high selectivity (close to 100%). Moreover, the catalytic activity of multimetallic Ti16-C4A is up to 2265.5 µmol g-1 h-1, which is at least 12 times higher than that of monometallic Ti-C4A (180.0 µmol g-1 h-1), and is the best-performing crystalline cluster-based photocatalyst known to date. Catalytic characterization combined with density functional theory calculations shows that in addition to the advantage of having more metal active sites (for adsorption and activation of more CO2 molecules), Ti16-C4A can effectively reduce the activation energy required for the CO2 reduction reaction by completing the multiple electron-proton transfer process rapidly with synergistic metal-ligand catalysis, thus exhibiting superior catalytic performance to that of monometallic Ti-C4A. This work provides a crystalline catalyst model system to explore the potential factors underlying the difference in catalytic reactivity between mono- and multimetallic sites.

13.
Angew Chem Int Ed Engl ; 62(33): e202304728, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37321974

RESUMO

Structural variants of high-nuclearity clusters are extremely important for their modular assembly study and functional expansion, yet the synthesis of such giant structural variants remains a great challenge. Herein, we prepared a lantern-type giant polymolybdate cluster (L-Mo132 ) containing equal metal nuclearity with the famous Keplerate type Mo132 (K-Mo132 ). The skeleton of L-Mo132 features a rare truncated rhombic triacontrahedron, which is totally different with the truncated icosahedral K-Mo132 . To the best of our knowledge, this is the first time to observe such structural variants in high-nuclearity cluster built up of more than 100 metal atoms. Scanning transmission electron microscopy reveals that L-Mo132 has good stability. More importantly, because the pentagonal [Mo6 O27 ]n- building blocks in L-Mo132 are concave instead of convex in the outer face, it contains multiple terminal coordinated water molecules on its outer surface, which make it expose more active metal sites to display superior phenol oxidation performance, which is more higher than that of K-Mo132 coordinated in M=O bonds on the outer surface.

14.
Adv Mater ; 35(40): e2304170, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37363880

RESUMO

Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling utilization. Herein, a three-in-one photocatalytic system of CO2 enrichment, CO2 reduction and H2 O oxidation sites is designed for diluted CO2 reduction. A Zn-Salen-based covalent organic framework (Zn-S-COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4 @Zn-S-COF shows a visible-light-driven CO2 -to-CO conversion rate of 105.88 µmol g-1 h-1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2 . Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g-1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn-S-COF promotes the activity of H2 O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction.

15.
Org Lett ; 25(14): 2405-2409, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37014308

RESUMO

A Rh(I)-catalyzed [5 + 2]/[2 + 2] cycloaddition cascade has been developed to afford a complex and highly strained [4-5-6-7] tetracyclic framework in good yields and excellent diastereoselectivities. During this transformation, three rings, three C-C bonds, and four contiguous stereocenters were formed efficiently. Mechanistically, the rare sterically congested multisubstituted cyclobutanes are constructed readily through Michael addition and a Mannich reaction cascade.

16.
Zhen Ci Yan Jiu ; 48(2): 158-64, 2023 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-36858412

RESUMO

OBJECTIVE: To observe the protective effect of electroacupuncture (EA) on the intestinal mucosal barrier and its relationship with the Notch/NF-κB signaling pathway in mice with ulcerative colitis (UC), so as to explore its mechanism of treating UC. METHODS: Male C57BL/6J mice were randomized into control, model and EA groups, with 6 mice in each group. The UC model was established by giving the mice with 2% Dextran Sulfate Sodium (DSS) for 7 days. EA (2 Hz/15 Hz, 0.2 mA) was applied at bilateral "Zusanli" (ST36) for 30 min, once a day for 7 days. The disease activity indexes ï¼»DAI=(body weight index score+stool score+bleeding score)/3; 0-4 pointsï¼½ of mice were calculated. The morphological changes of colonic tissues of mice in each group were observed by HE staining, and serum contents of TNF-α and IL-6 were detected by ELISA. Claudin-1 protein expression in colon tissue was detected by immunofluorescence, while the protein expression levels of Muc-2, Notch-1, MMP-9 in colon tissue were detected by immunohistochemistry. The real-time PCR method was used to detect the expression levels of Notch-1, Hes-1, NF-κB, TLR-4 and AKT mRNA in colon tissues. RESULTS: After modeling, the DAI, serum TNF-α and IL-6 contents, Notch-1 and MMP-9 protein expression, the relative expression levels of Notch-1, Hes-1, NF-κB, TLR-4 and AKT mRNA in the colonic tissue were significantly increased (P<0.001, P<0.01) in the model group relevant to the control group. At the same time, Claudin-1 and Muc-2 protein expression were significantly reduced (P<0.01). After the EA intervention, the increased DAI score, TNF-α and IL-6 contents, Notch-1 and MMP-9 protein expression, the relative expressions of Notch-1, Hes-1, NF-κB, TLR-4 and AKT mRNA, and the decreased Claudin-1 and Muc-2 protein expression were all reversed compared with the model group (P<0.05, P<0.01, P<0.001). H.E. staining of the colonic tissue showed damage and infiltration of inflammatory cells in the model group, and those were significantly improved in the EA group. CONCLUSION: EA can promote the recovery of intestinal mucosal barrier function and reduce inflammatory reaction in UC mice, which may be associated with its effects in inhibiting the excessive activation of the Notch/NF-κB signaling pathway.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Metaloproteinase 9 da Matriz , Claudina-1 , Interleucina-6 , Proteínas Proto-Oncogênicas c-akt , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa , Transdução de Sinais
17.
J Am Chem Soc ; 145(11): 6112-6122, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883963

RESUMO

Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.

18.
J Asian Nat Prod Res ; 25(1): 68-74, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35412403

RESUMO

Three new ent-abietane diterpenoids, 6ß-hydroxy-ent-abieta-7,13-dien-3-one (1), 2ß,13α,15-trihydroxy-ent-abieta-8(14)-en-3-one (2), and 2ß,9α,13ß,15-tetrahydroxy-ent-abieta-7-en-3-one (3), were isolated from 90% ethanol extract of the leaves of Croton cascarilloide. Their structures were determined by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, NOESY, and HMBC) NMR spectroscopy, in addition to electronic circular dichroism (ECD) spectra. The isolated diterpenoids were tested in vitro for antimicrobial activity against 6 pathogenic microorganisms. As a result, compounds 1-3 exhibited antimicrobial activity against the tested Gram positive bacteria with minimum inhibitory concentration values less than 50 µg/ml.


Assuntos
Anti-Infecciosos , Croton , Diterpenos , Abietanos/farmacologia , Abietanos/química , Croton/química , Diterpenos/química , Folhas de Planta/química , Estrutura Molecular
19.
Polymers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231899

RESUMO

Steam flooding is an effective development method for heavy oil reservoirs, and the steam flooding assisted by the profile control system can plug the dominant channels and further improve the recovery factor. High-temperature-resistant foam as a profile control system is a hot research topic, and the key lies in the optimal design of the foam system. In this paper, lignin was modified by sulfonation to obtain a high-temperature-resistant modified lignin named CRF; the foaming agent CX-5 was confirmed to have good high-temperature foaming ability by reducing the surface tension; the formula of the profile control system (A compound system of CRF and CX-5, abbreviated as PCS) and the best application parameters were optimized by the foam resistance factor. Finally, the effect of PCS-assisted steam flooding in enhanced oil recovery was evaluated by single sand packing tube flooding, three parallel tube flooding, and large-scale sand packing model flooding experiments. The results show that CX-5 has a good high-temperature foaming performance; the foam volume can reach more than 180 mL at 300 °C, and the half-life is more than 300 s. The optimal PCS formulation is 0.3 wt% CRF as an oil displacement agent + 0.5 wt% CX-5 as a foaming agent. The optimal gas-liquid ratio range is 1:2 to 2:1, and the high pressure and permeability are more conducive to the generation and stability of the foam. Compared with steam flooding, PCS-assisted steam flooding can improve oil recovery by 9% and 7.9% at 200 °C and 270 °C, respectively. PCS can effectively improve the heterogeneity of the reservoir, and increase the oil recovery of the three-parallel tube flooding experiment by 28.7%. Finally, the displacement results of the sand-packing model with large dimensions show that PCS can also expand the swept volume of the homogeneous model, but the effect is 9.46% worse than that of the heterogeneous model.

20.
Sci Adv ; 8(49): eadd5598, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490347

RESUMO

Photo- or electroreduction of carbon dioxide into highly valued products offers a promising strategy to achieve carbon neutrality. Here, a series of polyoxometalate-based metal-organic frameworks (M-POMOFs) were constructed by metalloporphyrins [tetrakis(4-carboxyphenyl)-porphyrin-M (M-TCPPs)] and reductive POM for photo- and electrocatalytic carbon dioxide reductions (PCR and ECR, respectively), and the mysteries between the roles of single metal site and cluster in catalysis were disclosed. Iron-POMOF exhibited an excellent selectivity (97.2%) with high methane production of 922 micromoles per gram in PCR, together with superior Faradaic efficiency for carbon dioxide to carbon monoxide (92.1%) in ECR. The underlying mechanisms were further clarified. Photogenerated electrons transferred from iron-TCPP to the POM cluster for methane generation under irradiation, while the abundant electrons flowed to the center of iron-TCPP for carbon monoxide formation under the applied electric field. The specific multielectron products generated on iron-POMOF through switching driving forces to control electron flow direction between single metal site and cluster catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...