Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 157: 110022, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35276453

RESUMO

With the development of green chemistry, the demand for environmentally friendly and biocompatible solvents for non-aqueous enzymatic catalysis is increasingly urgent. Deep eutectic solvents (DESs) are viewed as the most promising alternatives to traditional organic solvents in non-aqueous biocatalysis. To expand the types of DESs and provide guidance for DESs design for non-aqueous enzymatic catalysis, the enzyme performance in aqueous buffer after incubation in nearly anhydrous DESs was associated with the properties and component structures of DESs. Almond ß- Glucosidase (ß-GC) and Candida antarctica lipase B (CALB) were selected as model enzymes. Physico-chemical properties of DESs (as inferred by their solvatochromic parameters) were applied to explore the influences of DESs properties on enzyme activity. For DESs with the same HBD, the biocompability of DESs and thermal stability of enzymes in DESs were negatively associated with the polarity and hydrogen bond acidity of DESs, and were positively associated with hydrogen bond basicity of DESs. Whereas an opposite trend was observed in DESs with the same HBA. Analyzing from the DESs components, the biocompatibility of hydrophobic DESs for enzyme was much lower than that of hydrophilic DESs. Generally, the amount of hydroxyl group and the length of carbon chain represent advantageous ingredients for maintaining natural structure of enzyme molecule. The presence of carboxyl group in hydrophilic DESs and carbon-carbon double bond may impair enzyme structure and activity. This work is hoped to be helpful in expanding the applications of DESs in non-aqueous biocatalysis.


Assuntos
Carbono , Solventes Eutéticos Profundos , Catálise , Ligação de Hidrogênio , Solventes/química
2.
J Sci Food Agric ; 101(5): 1782-1791, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32892346

RESUMO

BACKGROUND: Ginkgo biloba seeds are well known for the significant curative effects on relieving cough and asthma. However, the development of products from ginkgo seeds still falls behind at present, resulting in a great waste of ginkgo seeds' resource. In this work, submerged fermentation of ginkgo seed powder using Eurotium cristatum was studied to investigate its feasibility as a new processing method. RESULTS: To promote the growth of E. cristatum, the optimum fermentation medium was 80.0 g L-1 of ginkgo seed powder with addition of 5.0 g L-1 calcium chloride (CaCl2 ), 4.0 g L-1 magnesium sulfate (MgSO4 ), 1.25 g L-1 zinc sulfate (ZnSO4 ) and 0.65 g L-1 iron(II) sulfate (FeSO4 ). The optimum fermentation conditions were pH 5.8 ± 0.1, inoculum size 5.1 × 106 CFU mL-1 , liquid medium volume 100 mL in 250-mL Erlenmeyer flask and fermentation 4 days. Through fermentation, the production of lovastatin in fermentation broth could reach up to 32.97 ± 0.17 µg mL-1 and the total antioxidant capacity was improved by more than two-fold. In addition, 40.15% of the ginkgotoxin in ginkgo seed powder was degraded while the entire degradation of ginkgolic acids was obtained. Moreover, fermented ginkgo seed powder suspension presented pleasant fragrances, and the activities of amylase and protease were enhanced to 11.30 ± 0.10 U mL-1 and 23.01 ± 0.20 U mL-1 , respectively. CONCLUSIONS: Submerged fermentation using E. cristatum could significantly enhance the functional value and safety of ginkgo seed powder, and had great potential to become a novel processing method for the development of ginkgo seeds fermented products. © 2020 Society of Chemical Industry.


Assuntos
Eurotium/metabolismo , Alimentos Fermentados/microbiologia , Ginkgo biloba/microbiologia , Antioxidantes/análise , Antioxidantes/metabolismo , Fermentação , Alimentos Fermentados/análise , Microbiologia de Alimentos , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Lovastatina/análise , Lovastatina/metabolismo , Pós/química , Piridoxina/análogos & derivados , Piridoxina/análise , Piridoxina/metabolismo , Salicilatos/análise , Salicilatos/metabolismo , Sementes/química , Sementes/metabolismo , Sementes/microbiologia
3.
Appl Biochem Biotechnol ; 193(2): 446-462, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33025567

RESUMO

Immobilization of enzyme based on combination of adsorption and cellulose derivative membrane coating was established in this work for the first time. Laccase, a commonly used enzyme in varied fields, was chosen as the model enzyme to demonstrate this method. After investigating operational conditions, the optimal process was obtained as follows: diatomite or HPD-417 as the adsorption carrier, 0.5% (w/v) methylcellulose (40,000~50,000) acetone solution as the coating solution, 0.75% (w/v) polyethylene glycol or maltose as the protective agent, and drying at 4 °C for 9 h. Under the optimal conditions, the residual activities of diatomite and HPD-417 immobilized laccase reached 99.33% and 94.15%, respectively. The study on properties showed that the immobilized laccases held high pH tolerance and thermal stability. The immobilized laccases were further applied to the indigo decolorization and 2, 4-dichlorophenol degradation. They showed high catalytic efficiency and could be reused for several batches. On the whole, the immobilization method developed in this work can effectively avoid the inactivation of laccase during immobilization and improve the stability of immobilized laccase. The laccase immobilized by this method shows obvious potential for environmental governance.


Assuntos
Celulose/química , Terra de Diatomáceas/química , Enzimas Imobilizadas/química , Lacase/química , Membranas Artificiais
4.
Chembiochem ; 21(5): 672-680, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31535442

RESUMO

An efficient and green method is crucial for the recovery of intracellular biological products. The major drawbacks of the conventional cell disruption method are nonselectivity and enzyme denaturation. The permeability of hydrophobic deep eutectic solvents (DESs) to the cell membrane was studied, for the first time, and then hydrophobic DESs were innovatively applied to release intracellular enzymes from recombinant Escherichia coli. After optimization, a DES suspension of l-menthol/oleic acid (0.5 %, v/v) showed the highest release yield of intracellular enzyme. Compared with that released by sonication, a release yield of phospholipase D (PLD) of up to 114.58 % was achieved, and the specific activity was increased by 1.96 times. The microstructure of the cell membrane under different treatments was observed by using an electron microscope to understand the permeation of DESs to the cell membrane. The feasibility and applicability of the proposed release method in industrial applications were also demonstrated. The effective and green release method of intracellular enzymes developed herein has bright prospects for industrial application to replace traditional cell disruption methods. A preliminary study on the permeability of hydrophobic DESs to the cell membrane showed that there would be a potential application prospect of hydrophobic DESs not only in releasing intracellular contents, but also in seeking new green penetrating agents.


Assuntos
Membrana Celular , Enzimas/química , Escherichia coli/enzimologia , Fosfolipase D/isolamento & purificação , Solventes/química , Membrana Celular/química , Membrana Celular/ultraestrutura , Química Verde , Interações Hidrofóbicas e Hidrofílicas , Microbiologia Industrial , Mentol/química , Ácido Oleico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...