Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 14(3): 1150-1165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486998

RESUMO

Aside from antibodies, peptides show great potential as immune checkpoint inhibitors (ICIs) due to several advantages, such as better tumor penetration and lower cost. Lymphocyte-activation gene 3 (LAG-3) is an immune checkpoint which can induce T cell dysfunction through interaction with its soluble ligand fibrinogen like protein-1 (FGL1). Here, we found that LAG-3 expression was higher than programmed cell death protein 1 (PD-1) in multiple human cancers by TCGA databases, and successfully identified a LAG-3 binding peptide LFP-6 by phage display bio-panning, which specifically blocks the interaction of LAG-3/FGL1 but not LAG-3/MHC-II. Subsequently, d-amino acids were introduced to substitute the N- and C-terminus of LFP-6 to obtain the proteolysis-resistant peptide LFP-D1, which restores T cell function in vitro and inhibits tumor growth in vivo. Further, a bispecific peptide LFOP targeting both PD-1/PD-L1 and LAG-3/FGL1 was designed by conjugating LFP-D1 with PD-1/PD-L1 blocking peptide OPBP-1(8-12), which activates T cell with enhanced proliferation and IFN-γ production. More importantly, LFOP combined with radiotherapy significantly improve the T cell infiltration in tumor and elevate systemic antitumor immune response. In conclusion, we developed a novel peptide blocking LAG-3/FGL1 which can restore T cell function, and the bispecific peptide synergizes with radiotherapy to further enhance the antitumor immune response.

2.
ACS Sens ; 9(2): 745-752, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38331733

RESUMO

Synthesizing the best material globally is challenging; it needs to know what and how much the best ingredient composition should be for satisfying multiple figures of merit simultaneously. Traditional one-variable-at-a-time methods are inefficient; the design-build-test-learn (DBTL) method could achieve the optimal composition from only a handful of ingredients. A vast design space needs to be explored to discover the possible global optimal composition for on-demand materials synthesis. This research developed a hypothesis-guided DBTL (H-DBTL) method combined with robots to expand the dimensions of the search space, thereby achieving a better global optimal performance. First, this study engineered the search space with knowledge-aware chemical descriptors and customized multiobjective functions to fulfill on-demand research objectives. To verify this concept, this novel method was used to optimize colorimetric ammonia sensors across a vast design space of as high as 19 variables, achieving two remarkable optimization goals within 1 week: first, a sensing array was developed for ammonia quantification of a wide dynamic range, from 0.5 to 500 ppm; second, a new state-of-the-art detection limit of 50 ppb was reached. This work demonstrates that the H-DBTL approach, combined with a robot, develops a novel paradigm for the on-demand optimization of functional materials.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Amônia , Colorimetria , Algoritmos
3.
Sci China Life Sci ; 67(5): 996-1009, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38324132

RESUMO

The immune checkpoint TIGIT/PVR blockade exhibits significant antitumor effects through activation of NK and CD8+ T cell-mediated cytotoxicity. Immune checkpoint blockade (ICB) could induce tumor ferroptosis through IFN-γ released by immune cells, indicating the synergetic effects of ICB with ferroptosis in inhibiting tumor growth. However, the development of TIGIT/PVR inhibitors with ferroptosis-inducing effects has not been explored yet. In this study, the small molecule Hemin that could bind with TIGIT to block TIGIT/PVR interaction was screened by virtual molecular docking and cell-based blocking assay. Hemin could effectively restore the IL-2 secretion from Jurkat-hTIGIT cells. Hemin reinvigorated the function of CD8+ T cells to secrete IFN-γ and the elevated IFN-γ could synergize with Hemin to induce ferroptosis in tumor cells. Hemin inhibited tumor growth by boosting CD8+ T cell immune response and inducing ferroptosis in CT26 tumor model. More importantly, Hemin in combination with PD-1/PD-L1 blockade exhibited more effective antitumor efficacy in anti-PD-1 resistant B16 tumor model. In summary, our finding indicated that Hemin blocked TIGIT/PVR interaction and induced tumor cell ferroptosis, which provided a new therapeutic strategy to combine immunotherapy and ferroptosis for cancer treatment.


Assuntos
Ferroptose , Hemina , Imunoterapia , Receptores Imunológicos , Hemina/farmacologia , Receptores Imunológicos/metabolismo , Animais , Humanos , Ferroptose/efeitos dos fármacos , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Simulação de Acoplamento Molecular , Células Jurkat , Camundongos Endogâmicos C57BL , Inibidores de Checkpoint Imunológico/farmacologia , Sinergismo Farmacológico , Interferon gama/metabolismo , Interferon gama/imunologia , Receptores Virais/metabolismo , Camundongos Endogâmicos BALB C
4.
ACS Appl Mater Interfaces ; 16(6): 7232-7242, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38302451

RESUMO

Niobium pentoxides (Nb2O5) present great potential as next-generation anode candidates due to exceptional lithium-ion intercalation kinetics, considerably high capacity, and reasonable redox potential. Although four phases of Nb2O5 including hexagonal, orthorhombic, tetragonal, and monoclinic polymorphs show diverse characteristics in electrochemical performance, stable lifetime, high specific capacity, and fast intercalation properties cannot be delivered simultaneously with a single phase. Herein, this issue is addressed by generating a homogeneous mixture of orthorhombic and monoclinic crystals at the nanoscale. Reversible lithium-ion intercalation/deintercalation of the monoclinic phase is achieved, and exceptional lithium storage sites are created at the interface of the two phases. As a result, electrochemical features of stable lifetime from the orthorhombic phase and high specific performance from the monoclinic phase are harmoniously combined. This dual-phase Nb2O5/C nanohybrids deliver as high as 380 mA h g-1 (0.01-3.0 V) and 184 mA h g-1 (1.0-3.0 V) after 200 cycles. The essential principle of property enhancement is further confirmed through in situ XRD measurements and DFT calculations. The dual-phase concept can be further applied on electrodes with multiphases to achieve high electrochemical performance.

5.
Small ; : e2400389, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287734

RESUMO

Rechargeable Mn-metal batteries (MMBs) can attract considerable attention because Mn has the intrinsic merits including high energy density (976 mAh g-1 ), high air stability, and low toxicity. However, the application of Mn in rechargeable batteries is limited by the lack of proper cathodes for reversible Mn2+ intercalation/de-intercalation, thus leading to low working voltage (<1.8 V) and poor cycling stability (≤200 cycles). Herein, a high-voltage and durable MMB with graphite as the cathode is successfully constructed using a LiPF6 -Mn(TFSI)2 hybrid electrolyte, which shows a high discharge voltage of 2.34 V and long-term stability of up to 1000 cycles. Mn(TFSI)2 can reduce the plating/stripping overpotential of Mn ions, while LiPF6 can efficiently improve the conductivity of the electrolyte. Electrochemical in-situ characterization implies the dual-anions intercalation/de-intercalation at the cathode and Mn2+ plating/stripping reaction at the anode. Theoretical calculations unveil the top site of graphite is the energetically favorable for anions intercalation and TFSI- shows the low migration barrier. This work paves an avenue for designing high-performance rechargeable MMBs towards electricity storage.

6.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37344099

RESUMO

BACKGROUND: Aside from immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), intervention of CD47/Sirpα mediated 'don't eat me' signal between macrophage and tumor cell is considered as a promising therapeutic approach for cancer immunotherapy. Compared with CD47, the novel immune checkpoint CD24/Siglec-10 can also deliver 'don't eat me' signal and CD24 shows much lower expression level in normal tissue which might avoid unwanted side effects. METHODS: Cell-based phage display biopanning and D-amino acid modification strategy were used to identify the CD24/Siglec-10 blocking peptide. Cell-based blocking assay and microscale thermophoresis assay were used to validate the blocking and binding activities of the peptide. Phagocytosis and co-culture assays were used to explore the in vitro function of the peptide. Flow cytometry was performed to assess the immune microenvironment after the peptide treatment in vivo. RESULTS: A CD24/Siglec-10 blocking peptide (CSBP) with hydrolysis-resistant property was identified. Surprisingly, we found that CSBP could not only block the interaction of CD24/Siglec-10 but also PD-1/PD-L1. CSBP could induce the phagocytosis of tumor cell by both the macrophages and monocytic myeloid-derived suppressor cells (M-MDSCs), which can further activate CD8+ T cells. Besides, combination of radiotherapy and CSBP synergistically reduced tumor growth and altered the tumor microenvironment in both anti-PD-1-responsive MC38 and anti-PD-1-resistant 4T1 tumor models. CONCLUSIONS: In summary, this is the first CD24/Siglec-10 blocking peptide which blocked PD-1/PD-L1 interaction as well, functioned via enhancing the phagocytosis of tumor cells by macrophages and M-MDSCs, and elevating the activity of CD8+ T cells for cancer immunotherapy.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Antígeno B7-H1 , Antígeno CD24/metabolismo , Antígeno CD47/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/uso terapêutico , Microambiente Tumoral
7.
Biochem Pharmacol ; 212: 115583, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148978

RESUMO

PD-1/PD-L1 blockade has achieved substantial clinical results in cancer treatment. However, the expression of other immune checkpoints leads to resistance and hinders the efficacy of PD-1/PD-L1 blockade. T cell immunoglobulin and mucin domain 3 (TIM-3), a non-redundant immune checkpoint, synergizes with PD-1 to mediate T cell dysfunction in tumor microenvironment. Development of small molecules targeting TIM-3 is a promising strategy for cancer immunotherapy. Here, to identify small molecule inhibitors targeting TIM-3, the docking pocket in TIM-3 was analyzed by Molecular Operating Environment (MOE) and the Chemdiv compound database was screened. The small molecule SMI402 could bind to TIM-3 with high affinity and prevent the ligation of PtdSer, HMGB1, and CEACAM1. SMI402 reinvigorated T cell function in vitro. In the MC38-bearing mouse model, SMI402 inhibited tumor growth by increasing CD8+ T and natural killing (NK) cells infiltration at the tumor site, as well as restoring the function of CD8+ T and NK cells. In conclusions, the small molecule SMI402 shows promise as a leading compound which targets TIM-3 for cancer immunotherapy.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Neoplasias , Animais , Camundongos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Microambiente Tumoral
8.
Nat Commun ; 14(1): 2301, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085534

RESUMO

Solid polymer electrolytes (SPEs), which are favorable to form intimate interfacial contacts with electrodes, are promising electrolyte of choice for long-cycling lithium metal batteries (LMBs). However, typical SPEs with easily oxidized oxygen-bearing polar groups exhibit narrow electrochemical stability window (ESW), making it impractical to increase specific capacity and energy density of SPE based LMBs with charging cut-off voltage of 4.5 V or higher. Here, we apply a polyfluorinated crosslinker to enhance oxidation resistance of SPEs. The crosslinked network facilitates transmission of the inductive electron-withdrawing effect of polyfluorinated segments. As a result, polyfluorinated crosslinked SPE exhibits a wide ESW, and the Li|SPE|LiNi0.5Co0.2Mn0.3O2 cell with a cutoff voltage of 4.5 V delivers a high discharge specific capacity of ~164.19 mAh g-1 at 0.5 C and capacity retention of ~90% after 200 cycles. This work opens a direction in developing SPEs for long-cycling high-voltage LMBs by using polyfluorinated crosslinking strategy.

9.
Int Immunopharmacol ; 116: 109783, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773567

RESUMO

BACKGROUND: Macrophage receptor with collagenous structure (MARCO), a novel immune checkpoint expressed on tumor-associated macrophages, has antitumor therapeutic properties. However, the association between MARCO and patient prognosis, immune infiltration, and ICI immunotherapy needs to be studied urgently. METHODS: MARCO distribution in cancer tissues was investigated using the TCGA and GTEx databases. The PrognoScan and KM Plotter databases was used to assess the MARCO prognosis. TIMER2.0, GEPIA, cBioPortal, and GSEA all confirmed the link between MARCO and immune infiltration, mutation profile, and enrichment pathway analysis. Data visualization was implemented by R language. RESULTS: In general, MARCO had a substantial impact on the prognosis of cancer patients and was expressed differently in cancer and adjacent normal tissues. High expression of MARCO was associated with poorer OS in bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), lung squamous cell carcinoma (LUSC), colon adenocarcinoma (COAD), and prostate adenocarcinoma (PRAD). However, high expression of MARCO had a better PFI in brain lower-grade glioma (LGG) and skin cutaneous melanoma (SKCM). We discovered that MARCO expression was lowest in pancreatic adenocarcinoma (PAAD) and rectum adenocarcinoma (READ) stage 1, BLCA stage 2, LUSC and stomach adenocarcinoma (STAD) stage 3, and liver hepatocellular carcinoma (LIHC) stage 4. Subsequently, we analyzed the correlation between MARCO and 47 immune checkpoints and observed that MARCO was positively connected with CD80, CD86, and leukocyte-associated immunoglobulin-like receptor 1(LAIR1) in most cancers. In COAD, MARCO has the most microsatellite instability (MSI). In addition, we discovered that high expression of MARCO patients had a better prognosis after immune checkpoint inhibitor (ICI) treatment in SKCM. Finally, GSEA revealed a significant correlation between MARCO and TNF/NFκB signaling, KRAS signaling, PI3K/AKT/mTOR pathway, IL-6-STAT3 signaling, TGFß pathway, and p53 pathway. CONCLUSION: This study comprehensively investigated the relationship between MARCO and clinical prognosis, immune infiltration, and ICI immunotherapy in various cancers. We demonstrated the potential of MARCO as an emerging biomarker, exploring new avenues for future tumor immunotherapy.


Assuntos
Neoplasias , Receptores Imunológicos , Humanos , Biomarcadores , Imunoterapia , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Prognóstico
11.
ACS Appl Mater Interfaces ; 14(36): 41103-41113, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044429

RESUMO

The presence of trace amounts of moisture in the electrolyte can cause hydrolysis of LiPF6 and deteriorate the stability of lithium metal batteries. Herein, we propose a multifunctional ionic liquid-type additive constituting a 1-methyl-1-butyl pyrrolidium cation (Py14+) and an acetate anion (CH3COO-) (denoted as IL-AC in this study), which can effectively adsorb the trace moisture and thus prevent the hydrolysis of LiPF6 via intermolecular interactions. The prepared IL-AC can also remove HF to suppress the dissolution of transition metal ions from cathode materials through the reaction CH3COO- + HF → CH3COOH + F-. Compared with the baseline electrolyte, the contents of HF and transition metal ions are significantly lower in the electrolyte with 0.5% IL-AC. Upon the addition of 0.5% IL-AC additive and 2500 ppm H2O, the Li||NCM811 battery shows a capacity of 153.7 mAh g-1 after 300 cycles, while the Li||LNMO battery possesses stable capacity retention of 93.22% after 500 cycles at 1C and a Coulombic efficiency greater than 99%. Thus, this work provides a convenient and effective method to absorb trace amounts of water and remove HF in the electrolyte and provides a new path for the expensive and tedious process of water removal from the electrolyte in industry.

12.
Pharmacol Res ; 182: 106343, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798286

RESUMO

Although the blockade of immune checkpoint PD-1/PD-L1 has achieved great success, the lack of tumor-infiltrating immune cells and PD-L1 expression in the tumor microenvironment results in a limited response in certain tumor types. Thus, rational and optimal combination strategies were urgently needed. The combination of PD-1/PD-L1 blockade and anti-angiogenic therapy has been reported to have great potential. Here, a chimeric peptide OGS was designed by conjugating the peptides OPBP-1 (8-12) and DA7R targeting PD-L1 and VEGFR2, respectively. OGS could bind to both human and mouse PD-L1 with high affinity and block the PD-1/PD-L1 interaction, and also inhibit the migration and tube formation of HUVEC cells in wound healing and tube formation assays. To further prolong the half-life of OGS, it was modified by coupling with peptide DSP which has a high binding affinity to both human serum albumin (HSA) and mouse serum albumin (MSA) to form the peptide DSPOGS. DSPOGS could not directly affect the viability, apoptosis, and cell cycle of tumor cells in vitro, while significantly inhibiting the tumor growth in the MC38 mouse model. DSPOGS could elicit a potent anti-tumor immune response and inhibit tumor angiogenesis, with the enhancement of tumor infiltrating CD8+ T cells and the IFN-γ secreting CD8+ T cells in the spleen and tumor-draining lymph node. Further, the combination of radiotherapy with DSPOGS could dramatically improve the therapeutic efficacy. Our study could provide a promising paradigm for the combination of immune checkpoint blockade, anti-angiogenesis, and radiotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral
13.
ChemSusChem ; 15(8): e202200063, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35253385

RESUMO

As a promising alternative as lithium-ion anode, niobium dioxide appeals to researchers due to high theoretical capacity and good electron conductivity. However, rarely work about NbO2 based high performance anode is reported. Here, NbO2 nanoparticles emcoated in continuous carbon matrix is constructed through CO2 /H2 coupling treatment. CO2 activation introduces unique carbon emcoating structure, which builds interconnected electron conductive network with low carbon content. Furthermore, crystallographic phase of NbO2 is enhanced during H2 treatment, which increases the lithium storage ability. Electrochemical performance of NbO2 anodes is significantly improved based on the carbon emcoating structure. A high reversible capacity of 391 mAh g-1 is retained after 350 cycles at 0.2 C. Additionally, at a current density of 1 A g-1 , the reversible capacity reaches 139 mAh g-1 . Compared with conventional NbO2 /C nanohybrids, the lithium diffusion coefficient of carbon-emcoated sample shows improvement of three orders of magnitude. Moreover, the in situ XRD investigation shows a reversible lithium insertion behaviour with a limited volume change.

14.
Biomolecules ; 11(5)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068552

RESUMO

Strategies boosting both innate and adaptive immunity have great application prospects in cancer immunotherapy. Antibodies dual blocking the innate checkpoint CD47 and adaptive checkpoint PD-L1 or TIGIT could achieve durable anti-tumor effects. However, a small molecule dual blockade of CD47/SIRPα and TIGIT/PVR pathways has not been investigated. Here, an elevated expression of CD47 and PVR was observed in tumor tissues and cell lines analyzed with the GEO datasets and by flow cytometry, respectively. Compounds approved by the FDA were screened with the software MOE by docking to the potential binding pockets of SIRPα and PVR identified with the corresponding structural analysis. The candidate compounds were screened by blocking and MST binding assays. Azelnidipine was found to dual block CD47/SIRPα and TIGIT/PVR pathways by co-targeting SIRPα and PVR. In vitro, azelnidipine could enhance the macrophage phagocytosis when co-cultured with tumor cells. In vivo, azelnidipine alone or combined with irradiation could significantly inhibit the growth of MC38 tumors. Azelnidipine also significantly inhibits the growth of CT26 tumors, by enhancing the infiltration and function of CD8+ T cell in tumor and systematic immune response in the tumor-draining lymph node and spleen in a CD8+ T cell dependent manner. Our research suggests that the anti-hypertensive drug azelnidipine could be repositioned for cancer immunotherapy.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Di-Hidropiridinas/farmacologia , Reposicionamento de Medicamentos/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias/terapia , Animais , Ácido Azetidinocarboxílico/farmacologia , Antígeno CD47/antagonistas & inibidores , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Tumoral , Cricetinae , Modelos Animais de Doenças , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Imunológicos/antagonistas & inibidores , Receptores Virais/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos
15.
ACS Appl Mater Interfaces ; 12(1): 1937-1943, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31815413

RESUMO

Ni-rich layered oxides, such as LiNi0.8Co0.1Mn0.1O2 (NCM811), are considered as promising cathode materials for lithium-ion batteries due to their high energy density. However, Ni-rich layered oxides are prone to react with water and carbon dioxide in ambient air forming residual lithium compounds, resulting in deterioration of electrochemical performance and bringing a challenge to the cathode electrode preparation. In this work, we have, for the first time, demonstrated that the chemical stability of the NCM811 material in ambient air can be significantly enhanced by passivating the surface with a hydrophobic self-assembled monolayer (SAM) of octadecyl phosphate (OPA). As a result, the degradation reaction between the NCM811 material and ambient air and thus the electrochemical performance deterioration were significantly suppressed during ambient air exposure. Specifically, the 5C-rate capacity retention deterioration of the NCM811 sample during 14-day ambient air exposure has been decreased from 12 to 2% by OPA passivation. Furthermore, the 200-cycle capacity retention deterioration of the NCM811 sample after 7-day ambient air exposure has been improved from 23 to 0.7% by OPA passivation. These results are very important for the practical application of Ni-rich oxide since no need for controlling of humidity is required on the cathode manufacture; thus, the cost can be reduced. The concept of molecular self-assembly on the NCM811 material also open vast possibilities to design reagents for surface passivation of Ni-rich layered oxides.

16.
Nano Lett ; 19(4): 2343-2349, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30856336

RESUMO

In recent years solid Li+ conductors with competitive ionic conductivity to those of liquid electrolytes have been reported. However, the incorporation of highly conductive solid electrolytes into the lithium-ion batteries is still very challenging mainly due to the high resistance existing at the solid-solid interfaces throughout the battery structure. Here, we demonstrated a universal interfacial modification strategy through coating a curable polymer-based glue electrolyte between the electrolyte and electrodes, aiming to address the poor solid-solid contact and thus decrease high interfacial resistance. The liquid glue exhibits both great wettability as well as chemical/electrochemical stability to most of the electrodes, and it can be easily solidified into a polymer electrolyte layer through a "post-curing" treatment. As a result, symmetric Li batteries with the glue modification exhibit much smaller impedance and enhanced stability upon plating/stripping cycles compared to the batteries without glue modification. The all-solid-state Li-S batteries with glue modification show significantly enhanced performances. The strategy of developing glue electrolytes to improve the electrode-electrolyte interface contact provides an alternative option for improving many other solid-state batteries.

17.
Medicine (Baltimore) ; 97(31): e11697, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30075571

RESUMO

Excision repair cross-complementing group 1 (ERCC1) functions as a nucleotide excision repair (NER) enzyme. Altered ERCC1 expression or function is closely associated with cancer development and progression. This study determined the association of ERCC1 expression with survivin expression, clinicopathological characteristics, and survival of esophageal squamous cell carcinoma (ESCC) patients after postoperative concurrent chemoradiotherapy.Tissue specimens from 102 resected ESCC patients were acquired for immunohistochemical analysis of ERCC1 and survivin protein expression.ERCC1 expression was detected in 62.7% of ESCC tissues and in 9.8% of normal squamous epithelium tissues (P < .01), while survivin expression was detected in 60.8% of ESCC tissues and in 19.6% of normal squamous epithelia (P < .01). ERCC1 overexpression associated with advanced tumor clinical stage and lymph node metastasis (P < .05), but not with tumor size, depth of invasion, or differentiation (P > .05). ERCC1 overexpression was also associated with survivin levels (r = 0.42, P < .01) and worse progression-free survival of ESCC patients after concurrent chemoradiotherapy. Multivariate analysis data revealed that ERCC1 and survivin protein expression were independent predictors of overall survival of ESCC patients after chemotherapy and/or radiotherapy (P < .05).ERCC1 overexpression is an important phenotype that is associated with ESCC lymph node metastasis and advanced tumor clinical stages. ERCC1 expression may also inhibit ESCC cell apoptosis via regulating survivin expression, and ERCC1 and survivin overexpression are independent predictors of prognosis for ESCC patients who receive chemotherapy and/or radiotherapy.


Assuntos
Carcinoma de Células Escamosas/patologia , Proteínas de Ligação a DNA/biossíntese , Endonucleases/biossíntese , Neoplasias Esofágicas/patologia , Proteínas Inibidoras de Apoptose/biossíntese , Adulto , Idoso , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Quimiorradioterapia , Intervalo Livre de Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago , Feminino , Expressão Gênica , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Survivina
18.
Exp Ther Med ; 13(3): 1155-1159, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28450957

RESUMO

The aim of the present study was to evaluate the serum levels of interleukin-6 (IL-6), CXC chemokine ligand-10 (CXCL-10) and intercellular adhesion molecule-l (ICAM-1) in patients with Graves' disease (GD) following iodine-131 (131I) therapy. A total of 30 patients with GD participated in the present study. Serum cytokine levels were measured with ELISA, and correlation analyses were performed. Serum levels of IL-6, CXCL-10 and ICAM-1 were significantly higher in patients with GD prior to treatment than those in the control subjects (P<0.01). Following 131I therapy, the serum levels of IL-6 and CXCL-10 in patients with GD were markedly increased within the first week, gradually decreased to the pretreatment level in the subsequent six months and decreased further at 18 months post-treatment. However, the serum levels of IL-6 and CXCL-10 in patients with GD at 18 months following 131I therapy remained significantly higher than in control subjects (P<0.01). Conversely, serum ICAM-1 levels in patients with GD were gradually increased in the 12 months following 131I therapy and reached a relatively stable level thereafter. Furthermore, the Pearson's correlation analysis indicated that the serum levels of IL-6, CXCL-10 and ICAM-1 were not associated with free triiodothyronine, the free thyroxine index, and thyroid-stimulating hormone in these patients. 131I therapy was able to alter the immune/inflammatory responses in the thyroids of patients with GD. However, these cytokines (IL-6, CXCL-10, and ICAM-1) are not associated with thyroid function; therefore, they cannot be used as prognostic markers for the 131I therapy of GD.

19.
Exp Ther Med ; 9(3): 925-930, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25667655

RESUMO

The aim of the present study was to determine whether the expression levels of interleukin (IL)-2 and IL-10 may be used as biological markers in Graves' disease (GD) patients. A total of 256 individuals, including 118 GD patients and 138 healthy individuals, were enrolled into the study. Blood samples were collected from each patient and healthy individual, which were then subjected to enzyme-linked immunosorbent assay (ELISA). Total RNA and total proteins were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. In addition, restriction fragment length polymorphism (RFLP) analysis was performed to detect the presence of genetic polymorphisms. The ELISA results indicated that the IL-2 and IL-10 serum levels in the GD patients were increased by ~5.2 and ~7-fold when compared with the levels in the healthy controls. The results of RT-qPCR indicated that the mRNA expression levels of IL-2 and IL-10 were upregulated in the GD patients when compared with the healthy controls. Furthermore, the western blot analysis results revealed that the protein expression levels of IL-2 and IL-10 were significantly increased in the GD patients. RFLP analysis indicated that the increased number of GG single nucleotide polymorphisms (SNPs) in the GD group were detected in the -330 locus of the IL-2 promoter and the -1082 locus of the IL-10 promoter. In addition, the results indicated that the relatively high rates of homozygous GG SNPs (IL-2 -330T/G and IL-10 -1082A/G polymorphisms) on the alleles may be associated with the incidence of GD. The serum, mRNA and protein expression levels of IL-2 and IL-10 were significantly increased in GD patients when compared with the levels in the healthy controls. In conclusion, the expression levels and genetic polymorphisms of IL-2 and IL-10 may be potential biomarkers for the incidence of Graves' disease in the population studied.

20.
Exp Ther Med ; 8(4): 1191-1196, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25187822

RESUMO

The purpose of this study was to evaluate and compare multiple daily injection (MDI) therapy of bolus insulin aspart and basal insulin glargine with continuous subcutaneous insulin infusion (CSII) with aspart in patients with type 2 diabetes mellitus (T2DM). It was assessed whether MDI was capable of controlling glycemic index with a higher efficacy than CSII by preferential adjustment of basal insulin with a lower total daily insulin dosage in T2DM. Two hundred patients with T2DM were enrolled in the study and randomly assigned to CSII (n=100) and MDI (n=100; aspart immediately prior to each meal and glargine at bedtime) groups for 12 weeks of therapy. During the last week of each treatment period, the subjects wore a continuous glucose monitoring system for 2-3 days. The dosage of basal insulin was preferentially adjusted to control prior-meal blood glucose levels, and the characteristics of insulin dosage were analyzed. No statistically significant differences were observed between the two groups in hemoglobin A1c (HbA1c), which dropped from 10-11% prior to therapy to 7-7.5% after 12 weeks. After 12 weeks, good glycemic level control was achieved in all patients in the MDI and CSII groups. A statistically significant difference in the dose of insulin between the CSII and MDI groups was observed (P<0.001). In conclusion, no significant differences were found between the two therapies in the incidence of hypoglycemia and HbA1c for the 12 weeks. The basal insulin dosage was significantly decreased in the MDI group compared with that in the CSII group, but the CSII group was superior to MDI group in decreasing fasting blood glucose and shortening the time required for hypoglycemia to meet the targeted level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...