Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(35): 39567-39577, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805871

RESUMO

Quasi-2D halide perovskites, especially the Ruddlesden-Popper perovskites (RPPs), have attracted great attention because of their promising properties for optoelectronics; however, there are still serious drawbacks, such as inefficient charge transport, poor stability, and unsatisfactory mechanical flexibility, restricting further utilization in advanced technologies. Herein, high-quality quasi-2D halide perovskite thin films are successfully synthesized with the introduction of the unique bication ethylenediammonium (EDA) via a one-step spin-coating method. This bication EDA, with short alkyl chain length, can not only substitute the typically bulky and weakly van der Waals-interacted organic bilayer spacer cations forming the novel Dion-Jacobson phase to enhance the mechanical flexibility of the quasi-2D perovskite (e.g., EDA(MA)n-1PbnI3n+1; MA = CH3NH3+) but also serve as a normal cation to achieve the more intact films (e.g., (iBA)2(MA)3-2x(EDA)xPb4I13). When fabricated into photodetectors, these optimized EDA-based perovskites deliver an excellent responsivity of 125 mA/W and a fast response time down to 380 µs under 532 nm irradiation. More importantly, the device with the Dion-Jacobson phase perovskite can be bent down to a radius of 2 mm and processed with 10,000 cycles of the bending test without any noticeable performance degradation because of its superior structure to RPPs. Besides, these films do not exhibit any material deterioration after ambient storage for 30 days. All these performance parameters are already comparable or even better than those of the state-of-the-art RPPs recently reported. This work provides valuable design guidelines of the quasi-2D perovskites to obtain high-performance flexible photodetectors for next-generation optoelectronics.

2.
ACS Nano ; 13(10): 12042-12051, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31580641

RESUMO

Due to the efficient photocarrier separation and collection coming from their distinctive band structures, superlattice nanowires (NWs) have great potential as active materials for high-performance optoelectronic devices. In this work, InGaZnO NWs with superlattice structure and controllable stoichiometry are obtained by ambient-pressure chemical vapor deposition. Along the NW axial direction, perfect alternately stacking of InGaO(ZnO)4+ blocks and InO2- layers is observed to form a periodic layered structure. Strikingly, when configured into individual NW photodetectors, the Ga concentration is found to significantly influence the amount of oxygen vacancies and oxygen molecules adsorbed on the NW surface, which dictate the photoconducting properties of the NW channels. Based on the optimized Ga concentration (i.e., In1.8Ga1.8Zn2.4O7), the individual NW device exhibits an excellent responsivity of 1.95 × 105 A/W and external quantum efficiency of as high as 9.28 × 107% together with a rise time of 0.93 s and a decay time of 0.2 s for the ultraviolet (UV) photodetection. Besides, the obtained NWs can be fabricated into large-scale parallel arrays on glass substrates as well to achieve fully transparent UV photodetectors, where the performance is on the same level or even better than many transparent photodetectors with high performance. All the results discussed above demonstrate the great potential of InGaZnO superlattice NWs for next-generation advanced optoelectronic devices.

3.
ACS Nano ; 13(5): 6060-6070, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31067402

RESUMO

Controlled synthesis of lead halide perovskite (LHP) nanostructures not only benefits fundamental research but also offers promise for applications. Among many synthesis techniques, although catalytic vapor-liquid-solid (VLS) growth is recognized as an effective route to achieve high-quality nanostructures, until now, there is no detailed report on VLS grown LHP nanomaterials due to the emerging challenges in perovskite synthesis. Here, we develop a direct VLS growth for single-crystalline all-inorganic lead halide perovskite ( i.e., CsPbX3; X = Cl, Br, or I) nanowires (NWs). These NWs exhibit high-performance photodetection with the responsivity exceeding 4489 A/W and detectivity over 7.9 × 1012 Jones toward the visible light regime. Field-effect transistors (FET) based on individual CsPbX3 NWs are also fabricated, where they show the superior hole mobility of up to 3.05 cm2/(V s), higher than other all-inorganic LHP devices. This work provides important guidelines for the further improvement of these perovskite nanostructures for utilizations.

4.
ACS Appl Mater Interfaces ; 10(22): 19019-19026, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29741083

RESUMO

Quasi two-dimensional (2D) layered organic-inorganic perovskite materials (e.g., (BA)2(MA) n-1Pb nI3 n+1; BA = butylamine; MA = methylamine) have recently attracted wide attention because of their superior moisture stability as compared with three-dimensional counterparts. Inevitably, hydrophobic yet insulating long-chained organic cations improve the stability at the cost of hindering charge transport, leading to the unsatisfied performance of subsequently fabricated devices. Here, we reported the synthesis of quasi-2D ( iBA)2(MA) n-1Pb nI3 n+1 perovskites, where the relatively pure-phase ( iBA)2PbI4 and ( iBA)2MA3Pb4I13 films can be obtained. Because of the shorter-branched chain of iBA as compared with that of its linear equivalent ( n-butylamine, BA), the resulting ( iBA)2(MA) n-1Pb nI3 n+1 perovskites exhibit much enhanced photodetection properties without sacrificing their excellent stability. Through hot-casting, the optimized ( iBA)2(MA) n-1Pb nI3 n+1 perovskite films with n = 4 give the significantly improved crystallinity, demonstrating the high responsivity of 117.09 mA/W, large on-off ratio of 4.0 × 102, and fast response speed (rise and decay time of 16 and 15 ms, respectively). These figure-of-merits are comparable or even better than those of state-of-the-art quasi-2D perovskite-based photodetectors reported to date. Our work not only paves a practical way for future perovskite photodetector fabrication via modulation of their intrinsic material properties but also provides a direction for further performance enhancement of other perovskite optoelectronics.

5.
Adv Mater ; 29(39)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815755

RESUMO

Recently, due to the possibility of thinning down to the atomic thickness to achieve exotic properties, layered materials have attracted extensive research attention. In particular, PbI2 , a kind of layered material, and its perovskite derivatives, CH3 NH3 PbI3 (i.e., MAPbI3 ), have demonstrated impressive photoresponsivities for efficient photodetection. Herein, the synthesis of large-scale, high-density, and freestanding PbI2 nanosheets is demonstrated by manipulating the microenvironment during physical vapor deposition. In contrast to conventional two-dimensional (2D) growth along the substrate surface, the essence here is the effective nucleation of microplanes with different angles relative to the in-plane direction of underlying rough-surfaced substrates. When configured into photodetectors, the fabricated device exhibits a photoresponsivity of 410 mA W-1 , a detectivity of 3.1 × 1011 Jones, and a fast response with the rise and decay time constants of 86 and 150 ms, respectively, under a wavelength of 405 nm. These PbI2 nanosheets can also be completely converted into MAPbI3 materials via chemical vapor deposition with an improved photoresponsivity up to 40 A W-1 . All these performance parameters are comparable to those of state-of-the-art layered-material-based photodetectors, revealing the technological potency of these freestanding nanosheets for next-generation high-performance optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...