Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4265, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769305

RESUMO

The advancement of contemporary adhesives is often limited by the balancing act between cohesion and interfacial adhesion strength. This study explores an approach to overcome this trade-off by utilizing the spontaneous polymerization of a protic ionic liquid-based monomer obtained through the neutralization of 2-acrylamide-2-methyl propane sulfonic acid and hydroxylamine. The initiator-free polymerization process is carried out through a gradual increase in monomer concentration in aqueous solutions caused by solvent evaporation upon heating, which results in the in-situ formation of a tough and thin adhesive layer with a highly entangled polymeric network and an intimate interface contact between the adhesive and substrate. The abundance of internal and external non-covalent interactions also contributes to both cohesion and interfacial adhesion. Consequently, the produced protic poly(ionic liquid)s exhibit considerable adhesion strength on a variety of substrates. This method also allows for the creation of advanced adhesive composites with electrical conductivity or visualized sensing functionality by incorporating commercially available fillers into the ionic liquid adhesive. This study provides a strategy for creating high-performance ionic liquid-based adhesives and highlights the importance of in-situ polymerization for constructing adhesive composites.

2.
Adv Mater ; : e2403039, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805574

RESUMO

The resistance of adhesives to organic solvents is of paramount importance in diverse industries. Unfortunately, many currently available adhesives exhibit either weak intermolecular chain interactions, resulting in insufficient resistance to organic solvents, or possess a permanent covalent crosslinked network, impeding recyclability. This study introduces an innovative approach to address this challenge by formulating zwitterionic poly(ionic liquid) (ZPIL) derivatives with robust dipole-dipole interactions, incorporating sulfonic anions and imidazolium cations. Due to its unique dynamic and electrostatic self-crosslinking structure, the ZPIL exhibits significant adhesion to various substrates and demonstrates excellent recyclability even after multiple adhesion tests. Significantly, ZPIL exhibits exceptional adhesion stability across diverse nonpolar and polar organic solvents, including ionic liquids, distinguishing itself from nonionic polymers and conventional poly(ionic liquid)s. Its adhesive performance remains minimally affected even after prolonged exposure to soaking conditions. The study presents a promising solution for the design of highly organic solvent-resistant materials for plastics, coatings, and adhesives.

3.
Nat Commun ; 15(1): 3929, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724556

RESUMO

Supramolecular glass is a non-covalently cross-linked amorphous material that exhibits excellent optical properties and unique intrinsic structural features. Compared with artificial inorganic/organic glass, which has been extensively developed, supramolecular glass is still in the infancy stage, and itself is rarely recognized and studied thus far. Herein, we present the development of the host-guest molecular recognition motifs between methyl-ß-cyclodextrin and para-hydroxybenzoic acid as the building blocks of supramolecular glass. Non-covalent polymerization resulting from the host-guest complexation and hydrogen bonding formation enables high transparency and bulk state to supramolecular glass. Various advantages, including recyclability, compatibility, and thermal processability, are associated with dynamic assembly pattern. Short-range order (host-guest complexation) and long-range disorder (three dimensional polymeric network) structures are identified simultaneously, thus demonstrating the typical structural characteristics of glass. This work provides a supramolecular strategy for constructing transparent materials from organic components.

4.
Mater Horiz ; 11(5): 1315-1324, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38170848

RESUMO

The rational transformation and utilization of biomass have attracted increasing attention because of its high importance in sustainable development and green economy. In this study, we used a supramolecular approach to convert biomass into functional materials. Six biomass raw materials with distinct chemical structures and physical properties were copolymerized with thioctic acid (TA) to afford poly[TA-biomass]s. The solvent-free copolymerization leads to the convenient and quantitative fabrication of biomass-based versatile materials. The non-covalent bonding and reversible solid-liquid transitions in poly[TA-biomass]s endow them with diversified features, including thermal processability, 3D printing, wet and dry adhesion, recyclability, impact resistance, and antimicrobial activity. Benefiting from their good biocompatibility and nontoxicity, these biomass-based materials are promising candidates for biological applications.

5.
Small ; : e2310839, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225689

RESUMO

Adhesive materials have played an essential role in the history of humanity. Natural adhesives composed of low-molecular-weight monomers have been overshadowed by modern petroleum-based glues. With the development of green economy, the demand for eco-friendly materials has increased. Herein, two natural biocompatible compounds, namely thioctic acid (TA) and malic acid (MA), are selected to prepare a high-performance pressure-sensitive adhesive poly[TA-MA]. This adhesive can be quantitatively obtained via a simple mixing and heating process. Poly[TA-MA] shows interesting and useful properties, including reversible flexibility, high elongation, and good self-healing, owing to its dynamic polymerization pattern and reversible cross-linking behavior. Poly[TA-MA] exhibits excellent adhesion performance under various extreme conditions, such as at low temperatures and in hot water. High values of shear strength (3.86 MPa), peel strength (7.90 N cm-1 ), loop tack (10.60 N cm-1 ), tensile strength (1.02 MPa), and shear resistance (1628 h) demonstrate the strong adhesive effect of poly[TA-MA]. Additionally, TA can be regenerated in the monomer forms from poly[TA-MA] with high recovery rate (>90%). Meanwhile, strong anti-bacterial behavior of poly[TA-MA] is recorded. This study not only reported a new pressure-sensitive adhesive but also fully displayed the feasibility of using natural small molecules to achieve robust surface adhesion.

6.
Mater Horiz ; 10(11): 5152-5160, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37700633

RESUMO

Understanding the nature of glass is one of the most important challenges in chemistry, physics, and materials science. In this study, transparent bulk supramolecular glasses with excellent optical behaviors and good mechanical properties were fabricated via the non-covalent polymerization of nucleosides. Hydrogen bonding is the main driving force in the formation of bulk supramolecular glasses. The directional and saturated character of hydrogen bonding enables the formation of a short-range ordered structure, while the weak nature and reversibility of hydrogen bonds allow for the asymmetric and random connections of the short-range ordered structure into a long-range disordered network. Various relaxations, including ß, γ, and δ relaxations, are observed at temperatures below the glass transition temperature, demonstrating the metastable nature of bulk supramolecular glasses. This investigation offers supramolecular insights into the nature of glass materials.

7.
Chemistry ; 29(44): e202301277, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37259672

RESUMO

Switchable self-adhesive films are promising coating materials for constructing smart windows. Compared to commonly used hydrogels, self-adhesive supramolecular films have a variety of advantages and serve as a universal carrier of stimuli-responsiveness. In this study, supramolecular adhesive material is processed into self-adhesive films, which display tough and long-term stable adhesion to commercially available organic/inorganic glass windows. Spiropyrans are used as the photo-responsive units to endow smart windows with switchable optical behavior. Reverse photochromism is successfully realized by the combination of supramolecular films and spiropyrans. Reversible and rapid transformations in the color and transmittance of smart windows are fully achieved by natural light irradiation in different weather conditions, including sun, rain, and clouds.

8.
Small ; 19(30): e2300857, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035948

RESUMO

Metal coordination can significantly improve the macroscopic performance of many materials by enhancing their dynamic features. In this study, two supramolecular interactions, Fe3+ -carboxylic acid coordination, and structural water-induced hydrogen bonding, into an artificial polymer were introduced. Various attractive features, including flexibility and stretchability, are achieved because of the bulk state and dynamic hydrogen bonds of poly(thioctic acid-water) (poly[TA-H]). These unique features are considerably enhanced after the incorporation of Fe3+ cations into poly[TA-H] because metal coordination increased the mobility of the poly[TA-H] chains. Thus, the poly(thioctic acid-water-metal) (poly[TA-HM]) copolymer exhibited better flexibility and stretchability. Moreover, notable underwater/low-temperature self-healing capacity is obtained via the synergistic effect of the metal and hydrogen bonding. Most of the impact energy is quickly absorbed by poly[TA-H] or poly[TA-HM] and effectively and rapidly dissipated via reversible debonding/bonding via the interactions between the metal and hydrogen. Macroscopic plastic deformation or structural failure is not observed during high-speed (50-70 m s-1 ) impact experiments or high-altitude (90 m) falling tests. Furthermore, poly[TA-HM] displayed good thermal molding properties, which enabled its processing via 3D fused deposition modeling printing. Poly[TA-HM] also showed considerable effectiveness for monitoring complicated, dynamic, and irregular biological activities owing to its highly pressure-sensitive nature.

9.
Angew Chem Int Ed Engl ; 62(34): e202303280, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37040089

RESUMO

Dispersing metal-organic framework (MOF) solids in stable colloids is crucial for their availability and processibility. Herein, we report a crown ether surface coordination approach for functionalizing the surface-exposed metal sites of MOF particles with amphiphilic carboxylated crown ether (CEC ). The surface-bound crown ethers significantly improve MOF solvation without compromising the accessible voids. We demonstrate that CEC -coated MOFs exhibit exceptional colloidal dispersibility and stability in 11 distinct solvents and six polymer matrices with a wide range of polarities. The MOF-CEC can be instantaneously suspended in immiscible two-phase solvents as an effective phase-transfer catalyst and can form various uniform membranes with enhanced adsorption and separation performance, which highlights the effectiveness of crown ether coating.

10.
Adv Sci (Weinh) ; 9(33): e2203630, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220340

RESUMO

Inspired by the bottom-up assembly in nature, an artificial self-assembly pattern is introduced into 3D-fused deposition modeling (FDM) printing to achieve additive manufacturing on the macroscopic scale. Thermally activated polymerization of thioctic acid (TA) enabled the bulk construction of poly(TA), and yielded unique time-dependent self-assembly. Freshly prepared poly(TA) can spontaneously and continuously transfer into higher-molecular-weight species and low-molecular-weight TA monomers. Poly(TA) and the newly formed TA further assembled into self-reinforcing materials via microscopic-phase separation. Bottom-up self-assembly patterns on different scales are fully realized by 3D FDM printing of poly(TA): thermally induced polymerization of TA (microscopic-scale assembly) to poly(TA) and 3D printing (macroscopic-scale assembly) of poly(TA) are simultaneously achieved in the 3D-printing process; after 3D printing, the poly(TA) modes show mechanically enhanced features over time, arising from the microscopic self-assembly of poly(TA) and TA. This study clearly demonstrates that micro- and macroscopic bottom-up self-assembly can be applied in 3D additive manufacturing.


Assuntos
Ácido Tióctico , Impressão Tridimensional
11.
Nat Commun ; 13(1): 5214, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064871

RESUMO

Low-molecular-weight adhesives (LMWAs) possess many unique features compared to polymer adhesives. However, fabricating LMWAs with adhesion strengths higher than those of polymeric materials is a significant challenge, mainly because of the relatively weak and unbalanced cohesion and interfacial adhesion. Herein, an ionic liquid (IL)-based adhesive with high adhesion strength is demonstrated by introducing an IL moiety into a Y-shaped molecule replete with hydrogen bonding (H-bonding) interactions. The IL moieties not only destroyed the rigid and ordered H-bonding networks, releasing more free groups to form hydrogen bonds (H-bonds) at the substrate/adhesive interface, but also provided electrostatic interactions that improved the cohesion energy. The synthesized IL-based adhesive, Tri-HT, could directly form thin coatings on various substrates, with high adhesion strengths of up to 12.20 MPa. Advanced adhesives with electrical conductivity, self-healing behavior, and electrically-controlled adhesion could also be fabricated by combining Tri-HT with carbon nanotubes.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35653162

RESUMO

Low-temperature adhesion is ubiquitous in daily life and industry. However, most supramolecular adhesives are thermoplastic materials that require heating during the adhesion. Herein, a supramolecular approach is used to construct unique pressure-sensitive adhesives (PSAs) that can be directly operated at low temperatures (-60 °C). Supramolecular polymerization between phytic acid (PA) and water (H) endows poly(PA-H)s with excellent mechanical properties and low temperature adhesion capacity. Poly(PA-H)s can easily be processed into PSA tapes, pastes, and particles. Poly(PA-H)s were directly adhered to various surfaces by pressing at low temperatures (0 to -60 °C). No heating or high-temperature-induced solid-liquid transition was required for the low-temperature adhesion of poly(PA-H)s. With the help of structural water units in supramolecular polymers, poly(PA-H)s showed strong, stable, and organic solvent resistant adhesion performances at low temperatures, with adhesion strength of up to 3.61 MPa at -60 °C.

13.
Mater Horiz ; 9(7): 1984-1991, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35604069

RESUMO

Underwater labeling under complicated conditions is challenging for modern adhesive materials. In this work, a series of supramolecular polymer adhesives were successfully prepared via the non-covalent copolymerization of low-molecular-weight monomers (thioctic acid (TA) and tetraphenylethene derivatives (TPEs)). Strong adhesion effects were observed under various conditions. The poly(TA-TPE)s showed long-term stability in underwater labeling. Due to the aggregation-induced emission (AIE) behavior of TPEs, poly(TA-TPE)s showed great potential as fluorescent labeling materials in water. Complicated and cryptographic information can be stored in labeling structures, and analyzed under ultraviolet (UV) irradiation. Supramolecular labeling showed excellent distinguishability in complex backgrounds. Meanwhile, fluorescent adhesives exhibited a number of advantages over visible colored labels.


Assuntos
Adesivos , Luminescência , Corantes , Polimerização
14.
Bioelectrochemistry ; 144: 108000, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34906815

RESUMO

A label-free electrochemical biosensor was firstly constructed to detect linear microcystin-LR (L-MC-LR) with high sensitivity. Degradation enzyme MlrB was used as recognition element for specific recognition of L-MC-LR. The electrode was modified with -COOH functionalized multi-walled carbon nanotube to increase the specific surface area and improve the conductivity, which was then applied to immobilize MlrB. The electrochemical signal was changed with the reaction between MlrB and L-MC-LR, which was recorded by using square wave voltammetry. The electrochemical biosensor showed superior sensitivity, with a dynamic range of 1 pg/mL to 100 ng/mL and a detection limit of 0.127 pg/mL. Moreover, the fabricated electrochemical biosensor exhibited excellent specificity toward L-MC-LR in real water samples. The concentrations of spiked L-MC-LR were 0.100, 5.00, 50.0 ng/mL, and the recovery rates were 95.0-104% with relative standard deviation (RSD) of 0.900-2.30% and 74.0-93.0% with RSD of 2.30-3.50% in lake water and tap water, respectively. Furthermore, the selectivity, reproducibility, and stability demonstrated the potential of degradation enzymes as recognition element in detection of cyanotoxins.


Assuntos
Toxinas Marinhas , Microcistinas
15.
Org Lett ; 23(24): 9554-9558, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34870442

RESUMO

Two unprecedented isomeric macrocycles, a tubular belt and a Möbius strip, with thianthrene joints have been constructed through a one-step cyclization reaction. Both structures are fully characterized by NMR spectroscopy, mass spectrometry, and single-crystal X-ray diffraction. A complexation study reveals that the tubular belt is a container for electron deficient guests. The Möbius strip exhibits twist-migration dynamics, which can be regulated by a sodium ion. Their facile synthesis, unique structure, and diverse host-guest chemistry enrich the belt chemistry.

16.
Chem Commun (Camb) ; 57(98): 13317-13320, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34812444

RESUMO

Pillar[n]arenes were rarely used as the building blocks for supramolecular adhesives. Herein, pillar[5]arene-based supramolecular polymer materials with tough adhesion behaviours on different substrates were prepared, with adhesion strengths up to 4.75 MPa. Strong and long-term dichloromethane-resistant adhesion performances were successfully obtained.

17.
ACS Appl Mater Interfaces ; 13(44): 53083-53090, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34711056

RESUMO

A series of poly(thioctic acid-catechol)s was prepared by supramolecular copolymerization of two low-molecular-weight monomers, thioctic acid (TA) and catechol (CA). The addition of a small amount of CA molecules significantly improved the adhesion ability of poly(TA) and transformed it into an applicable supramolecular polymer adhesive material. The robust adhesion of poly(TA-CA)s to soft surfaces was achieved by employing a hot-melt method. However, the supramolecular adhesion via the hot-melt method failed to perform in the presence of water. On-site supramolecular adhesion to wet and soft substrates was successfully realized through the solvent exchange behavior between water and the poly(TA-CA)s ethanol solution. Compared to the hot-melt method, the solvent exchange method displays various fascinating advantages and is suitable for adhesion conditions normally under the presence of water.

18.
Adv Mater ; 33(30): e2100962, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117661

RESUMO

Adhesive materials have wide applications in diverse fields, but the development of a novel and multipurpose adhesive is a great challenge. This study demonstrates that conventional poly(ionic liquid)s (PILs) can be designed as highly efficient adhesives by simply introducing alkoxy moieties into the cationic backbone of PILs containing bis(trifluoromethanesulfonimide) (TFSI- ) anions. The incorporated flexible alkoxy chain not only reduces the glass transition temperature of PILs but also endows these materials with strong hydrogen bonding interactions, which, together with the unique electrostatic interaction of the PILs, simultaneously contributes to a high cohesive energy and interfacial adhesive energy. Consequently, these alkoxy PILs are highly adhesive on various substrates such as glass, ceramic, stainless steel, aluminum, and polymers, in contrast to the nonadhesive behavior of conventional PILs. Photosensitive or electronically conductive composite adhesives are fabricated by virtue of the compatibility between ionic liquids and carbon nanotubes or silver nanofibers. Interestingly, the PIL-2-TFSI adhesive possesses a unique and reversible response to electric fields and achieves up to 35% improvement in adhesive strength.

20.
J Am Chem Soc ; 142(51): 21522-21529, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33301680

RESUMO

Adhesive materials that are resistant to low temperatures have wide applications in daily life, scientific research, and industry. Currently, the overwhelming majority of low-temperature-resistant adhesives are traditional polymer systems. In this study, a new strategy was developed to obtain strong and long-lasting adhesion effects from low-molecular-weight adhesives at low temperatures. The introduction of water molecules and the formation of hydrogen bonds not only triggered supramolecular polymerization but also endowed the water-involved copolymer with low-temperature resistance. The water content of the polymeric supramolecular system played a crucial role in exhibiting adhesion behavior at low temperatures. Good adhesion performance was obtained in extremely low-temperature environments, including liquid nitrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...