Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8011): 355-362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720042

RESUMO

The coupling of excitons in π-conjugated molecules to high-frequency vibrational modes, particularly carbon-carbon stretch modes (1,000-1,600 cm-1) has been thought to be unavoidable1,2. These high-frequency modes accelerate non-radiative losses and limit the performance of light-emitting diodes, fluorescent biomarkers and photovoltaic devices. Here, by combining broadband impulsive vibrational spectroscopy, first-principles modelling and synthetic chemistry, we explore exciton-vibration coupling in a range of π-conjugated molecules. We uncover two design rules that decouple excitons from high-frequency vibrations. First, when the exciton wavefunction has a substantial charge-transfer character with spatially disjoint electron and hole densities, we find that high-frequency modes can be localized to either the donor or acceptor moiety, so that they do not significantly perturb the exciton energy or its spatial distribution. Second, it is possible to select materials such that the participating molecular orbitals have a symmetry-imposed non-bonding character and are, thus, decoupled from the high-frequency vibrational modes that modulate the π-bond order. We exemplify both these design rules by creating a series of spin radical systems that have very efficient near-infrared emission (680-800 nm) from charge-transfer excitons. We show that these systems have substantial coupling to vibrational modes only below 250 cm-1, frequencies that are too low to allow fast non-radiative decay. This enables non-radiative decay rates to be suppressed by nearly two orders of magnitude in comparison to π-conjugated molecules with similar bandgaps. Our results show that losses due to coupling to high-frequency modes need not be a fundamental property of these systems.

2.
Mater Horiz ; 8(2): 571-576, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821273

RESUMO

We report the first demonstration using a stable π-radical as a versatile photosensitizer for hypoxia-overcoming photodynamic therapy. After self-assembling the radical molecules into radical nanoparticles (NPs), the NPs show good water dispersibility, good biocompatibility, broad near-infrared (NIR) absorption and emission at ∼800 nm. Significantly, the radical NPs remain stable in various biological mediums, after 100 days exposure to the ambient environment, and even after long-term laser irradiation, which is superior to many reported radical-based materials. More importantly, upon 635 nm laser irradiation, sufficient superoxide radical (O2-˙) generation and in vitro cytotoxicity were observed addressing the most important hurdle for successful PDT in the oxygen-deficient tumor microenvironment. In addition, the radical NPs are also demonstrated to have effective in vivo PDT efficacy, and excellent biosafety.


Assuntos
Nanopartículas , Fotoquimioterapia , Humanos , Hipóxia/tratamento farmacológico , Oxigênio , Fármacos Fotossensibilizantes/farmacologia
3.
Sci Rep ; 10(1): 17975, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087812

RESUMO

The high coercivity of Nd-Fe-B magnets can also be obtained in the Ce-Fe-B magnets fabricated via the dual-main-phase (DMP) method in which the high abundance Ce was used to substitute Nd(Pr). The inhomogeneous distributions of the matrix grains in the DMP magnet play a key role in the enhanced magnetic performance. Compared with the single-phase magnet, more grain boundary phases encapsulating the matrix 2:14:1 grain are formed in the DMP magnet, which reduce the exchange coupling between adjacent magnetic grains. The switching field distribution and the interaction field distribution of the Ce-Fe-B magnets were determined by the first-order-reversal curves (FORC). The switching field peaks around 6 kOe, 11 kOe and 12 kOe in the FORC distribution indicate that three major reversal components coexist for the DMP magnet. The overlapp of the second and third switching field peaks reveals the presence of a pinning interaction within individual magnetic grains with a core-shell structure, which further improve the coercivity of the magnet.

4.
Nat Mater ; 18(9): 977-984, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31332338

RESUMO

With their unusual electronic structures, organic radical molecules display luminescence properties potentially relevant to lighting applications; yet, their luminescence quantum yield and stability lag behind those of other organic emitters. Here, we designed donor-acceptor neutral radicals based on an electron-poor perchlorotriphenylmethyl or tris(2,4,6-trichlorophenyl)methyl radical moiety combined with different electron-rich groups. Experimental and quantum-chemical studies demonstrate that the molecules do not follow the Aufbau principle: the singly occupied molecular orbital is found to lie below the highest (doubly) occupied molecular orbital. These donor-acceptor radicals have a strong emission yield (up to 54%) and high photostability, with estimated half-lives reaching up to several months under pulsed ultraviolet laser irradiation. Organic light-emitting diodes based on such a radical emitter show deep-red/near-infrared emission with a maximal external quantum efficiency of 5.3%. Our results provide a simple molecular-design strategy for stable, highly luminescent radicals with non-Aufbau electronic structures.

5.
Chem Commun (Camb) ; 55(46): 6583-6586, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31112165

RESUMO

Stable luminescent π-radicals with doublet emission have attracted growing attention for functional molecular materials. However, their chiroptical properties, particularly their doublet emission-based circularly polarized luminescence, have never been investigated. Here, we investigate the circularly polarized luminescence (CPL) properties of a series of achiral luminescent open-shell π-radicals through various chirality regulation approaches, including induction by a magnetic field, supramolecular coassembly and chiral liquid crystal encapsulation.

6.
J Phys Chem Lett ; 9(22): 6644-6648, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30398056

RESUMO

A new luminescent radical, tris-2,4,6-trichlorophenylmethyl-1,5-diazarcarbazole (TTM-DACz), was synthesized and characterized. The photoluminescence quantum yield of TTM-DACz in solid 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene matrix film (5 wt %) is as high as 57.0%. Organic light-emitting diodes (OLEDs) employing TTM-DACz as the emitter were fabricated. By rational design of the device structure and host-guest doping system, external quantum efficiency (EQE) of up to 10.6% of the optimized device with a red CIE chromaticity of (0.62, 0.36) was obtained, which is among the highest values for red OLEDs using nonphosphorescent materials as the emitters. This work will accelerate the development of luminescent radical materials for high-performance OLEDs.

7.
Nature ; 563(7732): 536-540, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464267

RESUMO

Organic light-emitting diodes (OLEDs)1-5, quantum-dot-based LEDs6-10, perovskite-based LEDs11-13 and micro-LEDs14,15 have been championed to fabricate lightweight and flexible units for next-generation displays and active lighting. Although there are already some high-end commercial products based on OLEDs, costs must decrease whilst maintaining high operational efficiencies for the technology to realise wider impact.  Here we demonstrate efficient action of radical-based OLEDs16, whose emission originates from a spin doublet, rather than a singlet or triplet exciton. While the emission process is still spin-allowed in these OLEDs, the efficiency limitations imposed by triplet excitons are circumvented for doublets. Using a luminescent radical emitter, we demonstrate an OLED with maximum external quantum efficiency of 27 per cent at a wavelength of 710 nanometres-the highest reported value for deep-red and infrared LEDs. For a standard closed-shell organic semiconductor, holes and electrons occupy the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs), respectively, and recombine to form singlet or triplet excitons. Radical emitters have a singly occupied molecular orbital (SOMO) in the ground state, giving an overall spin-1/2 doublet. If-as expected on energetic grounds-both electrons and holes occupy this SOMO level, recombination returns the system to the ground state, giving no light emission. However, in our very efficient OLEDs, we achieve selective hole injection into the HOMO and electron injection to the SOMO to form the fluorescent doublet excited state with near-unity internal quantum efficiency.

8.
Phys Chem Chem Phys ; 20(27): 18657-18662, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29955740

RESUMO

A series of perchlorotriphenyl methyl (PTM) and tris(2,4,6-trichlorophenyl)methyl (TTM) radical derivatives were synthesized. The factors affecting the photoluminescence quantum yields (PLQYs) of π-radicals were studied systematically for the first time through comparing the photophysical properties of the synthesized PTM and TTM radicals. The room-temperature PLQY of a PTM radical derivative achieves to be 56.6%, which is the highest value among the organic near-infrared materials with peak wavelength over 650 nm. The photostabilities of the radicals was significantly enhanced via incorporation of substituent groups. The molecular rigidity, electron donating ability of the donor and dihedral angle between D-A system were found to be the potential factors to affect the luminescent efficiency of the open-shell molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...