Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(9): 2113-2122, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36815799

RESUMO

Neopentane is an ideal fuel model to study low-temperature oxidation chemistry. The significant discrepancies between experimental data and simulations using the existing neopentane models indicate that an updated study of neopentane oxidation is needed. In this work, neopentane oxidation experiments are carried out using two jet-stirred reactors (JSRs) at 1 atm, at a residence time of 3 s, and at three different equivalence ratios of 0.5, 0.9, and 1.62. Two different analytical methods (synchrotron vacuum ultraviolet photoionization mass spectrometry and gas chromatography) were used to investigate the species distributions. Numerous oxidation intermediates were detected and quantified, including acetone, 3,3-dimethyloxetane, methacrolein, isobutene, 2-methylpropanal, isobutyric acid, and peroxides, which are valuable for validating the kinetic model describing neopentane oxidation. In the model development, the pressure dependencies of the rate constants for the reaction classes Q̇OOH + O2 and Q̇OOH decompositions are considered. This addition improves the prediction of the low-temperature oxidation reactivity of neopentane. Another focus of model development is to improve the prediction of carboxylic acids formed during the low-temperature oxidation of neopentane. The detection and identification of isobutyric acid indicates the existence of the Korcek mechanism during neopentane oxidation. Regarding the formation of acetic acid, the reaction channels are considered to be initiated from the reactions of ȮH radical addition to acetaldehyde/acetone. This updated kinetic model is validated extensively against the experimental data in this work and various experimental data available in the literature, including ignition delay times (IDTs) from both shock tubes (STs) and rapid compression machines (RCMs) and JSR speciation data at high temperatures.

2.
ACS Omega ; 7(29): 25458-25465, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910184

RESUMO

Preparation of a high-efficiency, low-cost, and environmentally friendly non-precious metal catalyst for the oxygen reduction reaction (ORR) is highly desirable in fuel cells. Herein, a Fe-Fe3C-functionalized few-layer graphene sheet (Fe/Fe3C/FLG) nanocomposite was fabricated through the vacuum heat treatment technique using ferric nitrate and glucose as the precursors and exhibited a high-performance ORR electrocatalyst. Multiple characterizations confirm that the nanosized Fe particles with the Fe3C interface are uniformly distributed in the FLGs. Electrocatalytic kinetics investigation of the nanocomposite indicates that the electron transfer process is a four-electron pathway. The formation of the Fe3C interface between the Fe nanoparticles and FLGs may promote the electron transfer from the Fe to FLGs. Furthermore, the Fe/Fe3C/FLG nanocomposite not only exhibits high ORR catalytic activity but also displays desirable stability. Consequently, the obtained Fe/Fe3C/FLG nanocomposite might be a promising non-precious, cheap, and high-efficiency catalyst for fuel cells.

3.
Int J Biochem Cell Biol ; 79: 337-344, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27613572

RESUMO

During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane is the first target to be attacked by the accumulated ethanol. In such a prominent position, S. cerevisiae cell membrane could reversely provide protection through changing fluidity or elasticity secondary to remodeled membrane components or structure during the fermentation process. However, there is yet to be a direct observation of the real effect of the membrane compositional change. In this study, atomic force microscope-based strategy was performed to determine Young's modulus of S. cerevisiae to directly clarify ethanol stress-associated changes and roles of S. cerevisiae cell membrane fluidity and elasticity. Cell survival rate decreased while the cell swelling rate and membrane permeability increased as ethanol concentration increased from 0% to 20% v/v. Young's modulus decreased continuously from 3.76MPa to 1.53MPa while ethanol stress increased from 0% to 20% v/v, indicating that ethanol stress induced the S. cerevisiae membrane fluidity and elasticity changes. Combined with the fact that membrane composition varies under ethanol stress, to some extent, this could be considered as a forced defensive act to the ethanol stress by S. cerevisiae cells. On the other hand, the ethanol stress induced loosening of cell membrane also caused S. cerevisiae cell to proactively remodel membrane to make cell membrane more agreeable to the increase of environmental threat. Increased ethanol stress made S. cerevisiae cell membrane more fluidized and elastic, and eventually further facilitated yeast cell's survival.


Assuntos
Módulo de Elasticidade/efeitos dos fármacos , Etanol/farmacologia , Microscopia de Força Atômica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fluidez de Membrana/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia
4.
Can J Microbiol ; 62(10): 827-835, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27510429

RESUMO

Traditionally, trehalose is considered as a protectant to improve the ethanol tolerance of Saccharomyces cerevisiae. In this study, to clarify the changes and roles of trehalose during the bioethanol fermentation, trehalose content and expression of related genes at lag, exponential, and stationary phases (i.e., 2, 8, and 16 h of batch fermentation process) were determined. Although yeast cells at exponential and stationary phase had higher trehalose content than cells at lag phase (P < 0.01), there was no significant difference in trehalose content between exponential and stationary phases (P > 0.05). Moreover, expression of the trehalose degradation-related genes NTH1 and NTH2 decreased at exponential phase in comparison with that at lag phase; compared with cells at lag phase, cells at stationary phase had higher expression of TPS1, ATH1, NTH1, and NTH2 but lower expression of TPS2. During the lag-exponential phase transition, downregulation of NTH1 and NTH2 promoted accumulation of trehalose, and to some extent, trehalose might confer ethanol tolerance to S. cerevisiae before stationary phase. During the exponential-stationary phase transition, upregulation of TPS1 contributed to accumulation of trehalose, and Tps1 protein might be indispensable in yeast cells to withstand ethanol stress at the stationary phase. Moreover, trehalose would be degraded to supply carbon source at stationary phase.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trealose/metabolismo , Vias Biossintéticas , Etanol/metabolismo , Fermentação , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Int J Biochem Cell Biol ; 69: 196-203, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26515124

RESUMO

During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.


Assuntos
Membrana Celular/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Adaptação Fisiológica , Biocombustíveis , Permeabilidade da Membrana Celular , Ergosterol/metabolismo , Fermentação , Saccharomyces cerevisiae/citologia
6.
Int J Biochem Cell Biol ; 68: 33-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26279142

RESUMO

During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation.


Assuntos
Metabolismo Energético/genética , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial , Lactobacillus plantarum/fisiologia , Saccharomyces cerevisiae/metabolismo , Biocombustíveis , Ciclo do Carbono/genética , Fermentação , Glicerol/metabolismo , Ácido Láctico/biossíntese , Ácido Láctico/farmacologia , Redes e Vias Metabólicas/genética , Interações Microbianas , NAD/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
7.
Mil Med Res ; 2: 9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25914830

RESUMO

The ongoing Ebola outbreak poses an alarming risk to the countries of West Africa and beyond. On August 8, 2014, the World Health Organization (WHO) declared the cross-country Ebola outbreak a Public Emergency of International Concern. China has had no confirmed cases of Ebola. In this paper, virologic characteristics, pathogenesis, clinical manifestations, laboratory examination and prophylactic vaccines and therapeutic drugs of Ebola are summarized. Importantly, active responses and actions from China are introduced. Moreover, the key issues in the future prevention and control of Ebola were also addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...