Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865712

RESUMO

Excessively activated or dysregulated complement activation may contribute to the pathogenesis of a wide range of human diseases, thus leading to a surge in complement inhibitors. Herein, we developed a human-derived and antibody-like C3b-targeted fusion protein (CRIg-FH-Fc) *2, termed CG001, that could potently block all three complement pathways. CRIg and FH bind to distinct sites in C3b and synergistically inhibit complement activation. CRIg occupancy in C3b prevents the recruitment of C3 and C5 substrates, while FH occupancy in C3b accelerates the decay of C3/C5 convertases and promotes the Factor I-mediated degradation and inactivation of C3b. CG001 also showed therapeutic effects in AP-induced hemolytic mouse and CP-induced MsPGN rat models. In the pharmacological/toxicological evaluation in rats and cynomolgus monkeys, CG001 displayed an antibody-like pharmacokinetic profile, a convincing complement inhibitory effect, and no observable toxic effects. Therefore, CG001 holds substantial potential for human clinical studies.

2.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792045

RESUMO

Efficient and thorough treatment of dye wastewater is essential to achieve ecological harmony. In this study, a new type of calcium-based modified coal gangue (Ca-CG) was prepared by using solid waste coal gangue as raw material and a CaCl2 modifier, which was used for the removal of malachite green, methylene blue, crystal violet, methyl violet and other dyes in water. When the dosage of Ca-CG was 1-5 g/L, the dosage of Ca-CG was the main factor affecting the dye adsorption effect. The adsorption effects of Ca-CG on four dyes were as follows: malachite green > crystal violet > methylene blue > methyl violet. Kinetics, isotherms and thermodynamic analysis showed that the adsorption of malachite green, methyl blue, crystal violet and methyl violet by Ca-CG fitted the second-order kinetic model, and adsorption with chemical reaction is the main process. The adsorption of four dyes by Ca-CG conformed to the Freundlich model, which is dominated by multi-molecular layer adsorption, and the adsorption was easy to carry out. The adsorption process of Ca-CG on the four dyes was spontaneous. The results of FTIR, XRD and SEM showed that the calcium-based materials such as lipscombite and dolomite were the key to the adsorption of malachite green by Ca-CG, and the main mechanisms for the adsorption of malachite green by Ca-CG are surface precipitation, electrostatic action, and chelation reaction. Ca-CG adsorption has great potential for the removal of dye wastewater.

3.
Sci Total Environ ; 931: 172809, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679087

RESUMO

Tailings can be used as embankment materials instead of sand. However, they contain large amounts of heavy metal pollutants, which can lead to groundwater pollution. In this study, (lead-zinc) Pb-Zn tailings with five particle sizes and Sporosarcina pasteurii were used as test materials. Combined with the unconfined compressive strength (UCS) and leaching of heavy metal pollutants from Pb-Zn tailings, the feasibility of applying microbial induced carbonate precipitation (MICP)-treated Pb-Zn tailings to embankment materials was analysed from the perspective of strength and environmental performance. The results showed that the UCS and carbonate content of the specimens made of Pb-Zn tailings treated using MICP decreased with a decrease in the number of Pb-Zn tailing particles. The pH value of the leaching solution after MICP treatment of Pb-Zn tailings sand was stable at 7.83-8.03, and the fixation rate of metal ions was 90.28 %-100 %. FTIR, X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy tests showed that after the Pb-Zn tailings with particle sizes less than 100 mesh were treated using MICP, the number of carbonate crystals, crystal uniformity, and crystal overlap on the surface of the sample were considerably higher than those of the tailings with particle sizes greater than 250 mesh. The compressive strength and environmental performance of Pb-Zn tailings with particle sizes less than 100 mesh treated using MICP are good, and they are more suitable for embankment materials.

4.
Environ Sci Pollut Res Int ; 31(21): 31577-31589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635092

RESUMO

Sulfate wastewater has a wide range of sources and greatly harms water, soil, and plants. Iron-carbon microelectrolysis (IC-ME) is a potentially sustainable strategy to improve the treatment of sulfate (SO42-) wastewater by sulfate-reducing bacteria (SRB). In this study, an iron-carbon mixed micro-electrolysis bioreactor (R1), iron-carbon layered bioreactor (R2), activated carbon bioreactor (R3), and scrap iron filing bioreactor (R4) were constructed by up-flow column experimental device. The performance and mechanism of removing high-concentration sulfate wastewater under different sulfate concentrations, hydraulic retention times (HRT), and chemical oxygen demand (COD)/SO42- were discussed. The results show that the iron-carbon microelectrolysis-enhanced SRB technology can remove high-concentration sulfate wastewater, and the system can still operate normally at low pH. In the high hydraulic loading stage (HRT = 12 h, COD/SO42- = 1.4), the SO42- removal rate of the R1 reactor reached 98.08%, and the ORP value was stable between - 350 and - 450 mV, providing a good ORP environment for SRB. When HRT = 12 h and influent COD/SO42- = 1.4, the R1 reactor sulfate removal rate reached 96.7%. When the influent COD/SO42- = 0.7, the sulfate removal rate was 52.9%, higher than the control group. Biological community analysis showed that the abundance of SRB in the R1 reactor was higher than that in the other three groups, indicating that the IC-ME bioreactor could promote the enrichment of SRB and improve its population competitive advantage. It can be seen that the synergistic effect between IC-ME and biology plays a vital role in the treatment of high-concentration sulfate wastewater and improves the biodegradability of sulfate. It is a promising process for treating high-concentration sulfate wastewater.


Assuntos
Reatores Biológicos , Carbono , Ferro , Sulfatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio
5.
Front Microbiol ; 15: 1352430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618484

RESUMO

In view of water and soil getting polluted by Pb(II), Zn(II), and other heavy metals in tailings and acid mine drainage (AMD), we explored the removal effect of sulfate-reducing bacteria (SRB) on Pb(II), Zn(II), and other pollutants in solution and tailings based on the microbial treatment technology. We used the scanning electron microscope-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray fluorescence (XRF), to reveal the mechanism of SRB treatment of tailings. The results showed that SRB had a strong removal capacity for Zn(II) at 0-40 mg/L; however, Zn(II) at 60-100 mg/L inhibited the growth of SRB. Similarly, SRB exhibited a very strong ability to remove Pb(II) from the solution. At a Pb(II) concentration of 10-50 mg/L, its removal percentage by SRB was 100%. SRB treatment could effectively immobilize the pollutants leached from the tailings. With an increase in the amount of tailings added to each layer, the ability of SRB to treat the pollutants diminished. When 1 cm of tailingssand was added to each layer, SRB had the best effect on tailing sand treatment. After treatment, the immobilization rates of SO42-, Fe(III), Mn(II), Pb(II), Zn(II), Cu(II), and total Cr in the leachate of #1 tailing sand were 95.44%, 100%, 90.88%, 100%, 96.20%, 86.23%, and 93.34%, respectively. After the tailings were treated by SRB, although the tailings solidified into a cohesive mass from loose granular particles, their mechanical strength was <0.2 MPa. Desulfovibrio and Desulfohalotomaculum played the predominant roles in treating tailings by mixing SRB. The S2- and carbonate produced by mixing SRB during the treatment of tailings could metabolize sulfate by combining with the heavy metal ions released by the tailings to form FeS, MnS, ZnS, CuS, PbS, Cr2S3, CaCO3, MnCO3, and other precipitated particles. These particles were attached to the surface of the tailings, reducing the environmental pollution of the tailings in the water and soil around the mining area.

6.
Sci Rep ; 14(1): 211, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168529

RESUMO

Nano-FeS is prone to agglomeration in the treatment of chromium-containing wastewater, and ultrasonic precipitation was used to synthesize nano-FeS to increase its dispersion. The optimization of the preparation method was carried out by single factor method (reaction temperature, Fe/S molar ratio and FeSO4 dropping flow rate) and response surface methodology. Dynamic experiments were constructed to investigate the long-term remediation effect and water column changes of nano-FeS and its solid particles. The changes of the remediation materials before and after the reaction were observed by SEM, and the mechanism of the remediation of chromium-containing wastewater by nano-FeS prepared by ultrasonication was revealed by XRD. The results showed that the reaction temperature of 12 °C, Fe/S molar ratio of 3.5 and FeSO4 dropping flow rate of 0.5 mL/s were the best parameters for the preparation of nano-FeS. The nano-FeS has efficient dispersion and well-defined mesoporous structure in the form of needles and whiskers of 40-80 nm. The dynamic experiments showed that the average removal of Cr(VI) and total chromium by nano-FeS and its immobilized particles were 94.97% and 63.51%, 94.93% and 45.76%, respectively. Fe2+ and S2- ionized by the FeS nanoparticles rapidly reduced Cr(VI) to Cr(III). Part of S2- may reduce Fe3+ to Fe2+, forming a small iron cycle that gradually decreases with the ion concentration. Cr(III) and Fe2+ form Cr(OH)3 and FeOOH, respectively, with the change of aqueous environment. Another part of S2- reacts with Cr(III) to form Cr2S3 precipitate or is oxidized to singlet sulfur. The FeS nanoparticles change from short rod-shaped to spherical shape. Compared with the conventional chemical precipitation method, the method used in this study is simple, low cost, small particle size and high removal rate per unit.

7.
Environ Sci Pollut Res Int ; 30(23): 63915-63931, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059955

RESUMO

The immobilized lanthanum-modified biomass ash gel ball (CS-La-BA) was prepared with lanthanum chloride, biomass ash, and chitosan to remove phosphorus from water. CS-La-BA was characterized by several analytical techniques. SEM-EDS results showed that CS-La-BA has a well-developed pore structure and abundant adsorption sites. The surface area of BET is 75.46 m2/g and the pore size is mostly at 1.84 nm, indicating that it is a composite porous material with abundant microporous structure. The presence of La on biomass ash and the charge property of CS-La-BA were determined by XRD and zeta potential, and the adsorption mechanism of CS-La-BA on phosphate, including precipitation, electrostatic adsorption, ligand exchange, and complexation mechanism, was revealed by FTIR and XPS. The effects of pH, temperature, adsorbent dosage, initial phosphorus concentration, adsorption time, and coexisting ions on the phosphorus uptake performance of CS-La-BA were discussed. The adsorption experiment results show that the phosphorus removal rate of CS-La-BA can reach 95.6%. Even after six desorption and regeneration experiments, the phosphorus removal rate still reaches 68.13%, which indicates that CS-La-BA has good phosphorus adsorption performance and desorption and regeneration capacity. The phosphorus adsorption process of CS-La-BA conforms to the Freundlich isotherm adsorption equation and general-order kinetic model. The internal diffusion of the adsorption process is dominant, and the maximum adsorption capacity is 31.73 mg/g (25 ℃). Thermodynamic experiments show that the adsorption process of phosphorus by CS-La-BA is a spontaneous entropy increase process.


Assuntos
Quitosana , Poluentes Químicos da Água , Fósforo , Quitosana/química , Lantânio/química , Adsorção , Biomassa , Cinética , Concentração de Íons de Hidrogênio
8.
ACS Omega ; 8(4): 4046-4059, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743035

RESUMO

Sulfate reducing bacteria (SRB) can simultaneously and efficiently remove SO4 2- and heavy metal ions from acid mine drainage (AMD). Environmental factors have a great influence on AMD treated by SRB metabolic reducing sulfate. Providing a suitable growth environment can improve the effect of SRB on AMD. In this paper, the wet soil around the tailings reservoir was used as seed mud to enrich SRB. Based on the single factor experiment method and the response surface methodology (RSM), the effects of temperature, environmental pH value, S2- concentration, and COD/SO4 2- on the growth of SRB were analyzed. The effects of environmental factors such as temperature and pH on the desulfurization performance of SRB were investigated. The results showed that the growth curve of SRB was "S" type. SRB was in the logarithmic phase when cultured for 14-86 h, with high activity and vigorous growth metabolism. When the temperature is 32∼35 °C, the activity of SRB is the highest. With the gradual increase of the S2- concentration in the culture system, SRB activity will be inhibited and even lead to SRB cell death. The environmental pH value that SRB can tolerate is 5∼8, and when the environmental pH value is 7∼8, the SRB activity is the strongest. The chemical oxygen demand (COD)/SO4 2- that is most suitable for SRB growth is 2. The optimal growth conditions of SRB obtained from RSM were as follows: culture temperature at 34.74 °C, initial pH being 8.00, and initial COD/SO4 2- being 1.98. Under these conditions, the OD600 value was 1.45, the pH value was 9.37, the oxidation reduction potential (ORP) value was -399 mV, and the removal percentage of SO4 2- was 88.74%. The results of RSM showed that the effects of culture temperature, environmental pH, and COD/SO4 2- on the desulfurization performance of SRB were extremely significant. The order of affecting the removal of SO4 2- by SRB was environmental pH > temperature > COD/SO4 2-.

9.
Chemosphere ; 313: 137560, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526140

RESUMO

With the acceleration of industrialisation and urbanisation, air pollution has become a serious global concern as a hazard to human health, with urban particulate matter (UPM) accounting for the largest share. UPM can rapidly pass into and persist within systemic circulation. However, few studies exist on whether UPM may have any impact on blood components. In this study, UPM standards (SRM1648a) were used to assess the influence of UPM on erythrocyte quality in terms of oxidative and metabolic damage as well as phagocytosis by macrophages in vitro and clearance in vivo. Our results showed that UPM had weak haemolytic properties. It can oxidise haemoglobin and influence the oxygen-carrying function, redox balance, and metabolism of erythrocytes. UPM increases the content of reactive oxygen species (ROS) and decreases antioxidant function according to the data of malonaldehyde (MDA), glutathione (GSH), and glucose 6 phosphate dehydrogenase (G6PDH). UPM can adhere to or be internalised by erythrocytes at higher concentrations, which can alter their morphology. Superoxide radicals produced in the co-incubation system further disrupted the structure of red blood cell membranes, thereby lowering the resistance to the hypotonic solution, as reflected by the osmotic fragility test. Moreover, UPM leads to an increase in phosphatidylserine exposure in erythrocytes and subsequent clearance by the mononuclear phagocytic system in vivo. Altogether, this study suggests that the primary function of erythrocytes may be affected by UPM, providing a warning for erythrocyte quality in severely polluted areas. For critically ill patients, transfusion of erythrocytes with lesions in morphology and function will have serious clinical consequences, suggesting that potential risks should be considered during blood donation screening. The current work expands the scope of blood safety studies.


Assuntos
Poluição do Ar , Material Particulado , Humanos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Eritrócitos/metabolismo
10.
Environ Sci Pollut Res Int ; 30(2): 3351-3366, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35947258

RESUMO

In this study, lignite-loaded nano-FeS (nFeS@Lignite) was successfully prepared by ultrasonic precipitation, and its potential for treating acid Cr(VI)-containing wastewater was explored. The results showed that the 40--80-nm rod-shaped nFeS was successfully loaded onto lignite particles, and the maximum adsorption capacity of Cr(VI) by nFeS@Lignite reached 33.08 mg∙g-1 (reaction time = 120 min, pH = 4, temperature = 298.15 K). The adsorption process of Cr(VI) by nFeS@Lignite fitted the pseudo-second-order model and the Langmuir isotherm model, and thermodynamic results showed that the adsorption process was an endothermic process with an adsorption enthalpy of 28.0958 kJ·mol-1. The inhibition intensity of coexisting anions on Cr(VI) removal was in the order of PO43- > NO3- > SO42- > Cl-, and the increase of ionic strength resulted in more pronounced inhibition. Electrostatic adsorption, reduction, and precipitation were synergistically engaged in the adsorption of Cr(VI) by nFeS@Lignite, among which reduction played a major role. The characterization results showed that Fe2+, S2-, and Cr(VI) were converted to FeOOH, S8, SO42-, Fe2O3, Cr2O3, and Fe(III)-Cr(III) complexes. This research demonstrates that nFeS@Lignite is a good adsorbent with promising potential for application in the remediation of heavy metal-contaminated wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Compostos Férricos/química , Poluentes Químicos da Água/análise , Cromo/química , Adsorção , Cinética
11.
ACS Omega ; 7(36): 32331-32338, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36119996

RESUMO

Chromium has been considered as one of the most hazardous heavy metals because of its strong and persistent toxicity to the ecosystem and human beings. In this study, fly ash-loaded nano-FeS (nFeS-F) composites were constructed with fly ash as the carrier, and the performance and mechanism of the composites for the removal of Cr(VI) and total chromium from water were investigated. The composite was characterized by X-ray diffraction and transmission electron microscopy. The effects of fly ash size, molarity of FeSO4, and flow rate of FeSO4 solution on the removal of Cr(VI) and total chromium were investigated by a single factor experiment. The interaction of various factors was studied by the Box-Behnken response surface methodology. The optimum conditions of removal of Cr(VI)and total chromium by nFeS-F were determined. The results show that ① the optimal preparation conditions for nFeS-F were an FeSO4 concentration of 0.45 mol/L, a fly ash particle size of 120-150 mesh, and a flow rate of 0.43 mL/s.② The response surface model provides reliable predictions for the removal efficiencies of Cr(VI) and total chromium.③ The removal efficiencies of Cr(VI) and total chromium were 92.87 and 83.53%, respectively, under the optimal preparation conditions by the experimental test. This study provides an effective method for the removal of Cr(VI) and total chromium.

12.
Sci Rep ; 12(1): 8783, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610343

RESUMO

Aiming at the problem that the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB) biological method is susceptible to pH, metal ions, sulfate and carbon source. Lignite immobilized SRB particles (SRB-LP) and Rhodopseudomonas spheroides (R. spheroides) activated lignite immobilized SRB particles (R-SRB-LP) were prepared using microbial immobilization technology with SRB, R. spheroides and lignite as the main substrates. The dynamic experimental columns 1# and 2# were constructed with SRB-LP and R-SRB-LP as fillers, respectively, to investigate the dynamic repair effect of SRB-LP and R-SRB-LP on AMD. The mechanism of AMD treated with R-L-SRB particles was analyzed by scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectrometer and low-temperature nitrogen adsorption. The result showed that the combination of R. spheroides and lignite could continuously provide carbon source for SRB, so that the highest removal rates of SO42-, Cu2+ and Zn2+ in AMD by R-SRB-LP were 93.97%, 98.52% and 94.42%, respectively, and the highest pH value was 7.60. The dynamic repair effect of R-SRB-LP on AMD was significantly better than that of SRB-LP. The characterization results indicated that after R-SRB-LP reaction, the functional groups of -OH and large benzene ring structure in lignite were broken, the lignite structure was destroyed, and the specific surface area was 1.58 times larger than before reaction. It illustrated that R. spheroides provided carbon source for SRB by degrading lignite. The strong SRB activity in R-SRB-LP, SRB can co-treat AMD with lignite, so that the dynamic treatment effect of R-SRB-LP on AMD is significantly better than that of SRB-LP.


Assuntos
Carvão Mineral , Rhodobacter sphaeroides , Ácidos/química , Carbono/química , Mineração , Sulfatos/química
13.
RSC Adv ; 12(10): 6054-6062, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424544

RESUMO

In terms of the problem of severe pollution to the ecological environment caused by the acidic chrome-containing wastewater produced in the tanning, electroplating, metallurgy, printing and dyeing and other industries, based on the good adsorbability, reducibility and other properties of heavy metals such as Cr(vi) by lignite and nano FeS, the lignite-loaded nano FeS adsorbing material (nFeS-lignite) was prepared by ultrasonic precipitation method. NFeS-lignite and lignite were used as fillers to construct 1# and 2# dynamic columns to carry out the dynamic treatment experiment of acidic chrome-containing wastewater. And nFeS-lignite and lignite were characterized by XRD, SEM and EDS to explore the regularity, long-acting properties and removal mechanism of acidic chrome-containing wastewater treated by NFeS-lignite and lignite. The results indicate that: ① during 25 days of operation, the average removal percentages of Cr(vi) in the 1# and 2# dynamic columns are 71.6% and 53.1%. The average removal percentages of total chromium in 1# and 2# dynamic columns are 54.4% and 28.8%, and the average effluent pH of 1# and 2# dynamic columns is 5.3 and 7.3. ② According to XRD, SEM, EDS and FTIR analysis, the reducing groups in the structure of nFeS-lignite, such as -CH3, -CH2, C-O and Ar-OH, participate in the reaction and are oxidized to C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and other groups. A large number of sediment crystals appeared on the particle surface, and new diffraction peaks such as FeOOH, Cr(OH)3 and Cr2S3 appeared at the same time, indicating that after Cr(vi) was reduced to Cr(iii), it would be fixed on the surface of nFeS-lignite in the form of precipitation such as hydroxide and sulfide.

14.
RSC Adv ; 12(8): 4595-4604, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425486

RESUMO

The problems of acid mine drainage (AMD) in coal mine acidic wastewaters arise from a range of sources, including severe pollution with heavy metals and SO4 2- and difficulties during treatment. Based on the ability of Maifan stone to adsorb heavy metals and the dissimilatory reduction of SO4 2- by sulfate-reducing bacteria (SRB), Maifan stone-sulfate-reducing bacterium-immobilized particles were prepared via immobilization techniques using Shandong Maifan stone as the experimental material. A single factor experiment was used to investigate the influences of the dosage of Maifan stone, the particle size of Maifan stone and the dosage of SRB on the pH improvement effect and the removal rates of SO4 2-, Fe2+ and Mn2+. The Box-Behnken response surface method was used to determine the optimal preparation conditions for the Maifan stone and SRB immobilized particles in accordance with the ion removal rate and pH improvement effect when dealing with AMD. The results show that: (1) the optimal preparation conditions for Maifan stone synergistic SRB immobilized particles are determined by single factor experiment: the dosage of Maifan stone is 5 g, the particle size of Maifan stone is 0.075-0.106 mm, and the dosage of SRB is 25 mL per 100 mL; the removal rates of SO4 2-, Fe2+ and Mn2+ from AMD by the Maifan stone and SRB immobilized particles prepared under these conditions were 92.22%, 95.41% and 86.05%, and the pH was increased from 4.08 to 7.45. (2) From the variance analysis of the response surface model, it can be seen that the model effectively predicts the SO4 2- removal rate, Fe2+ removal rate, Mn2+ removal rate and pH change. (3) After further optimization using the response surface method, the optimal preparation conditions of Maifan stone and SRB immobilized particles are determined as follows: Maifan stone dosage is 5 g, Maifan stone particle size is 0.075-0.106 mm, and SRB dosage is 25 mL per 100 mL. Through experiments, the removal rates of SO4 2-, Fe2+ and Mn2+ from AMD by the Maifan stone and SRB immobilized particles prepared under these conditions were 92.12%, 95.93% and 87.14%, respectively, and the pH was increased from 4.08 to 7.49.

15.
Sci Rep ; 12(1): 3964, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273309

RESUMO

In response to the insufficient supply of carbon sources and the toxicity of heavy metal ions when using sulfate reducing bacteria (SRB) to treat acid mine wastewater (AMD), the immobilized particles are prepared with Rhodopseudomonas, SRB and lignite as the main raw materials. And based on single factor test and orthogonal test to determine the optimal ratio of biologically activated lignite fixed SRB particles. The adsorption characteristics of immobilized particles were studied under the optimal ratio, and the reaction kinetics and adsorption capacity of SRB particles immobilized on biologically activated lignite to different ions were analyzed. The results show that: lignite not only has good adsorption performance, but also can be used as the carbon source of SRB after being degraded by Rhodopseudomonas, solving the problems of low removal efficiency of SRB treatment of AMD and insufficient carbon source supply. When the dosage of lignite (particle size is 200 mesh), Rhodopseudomonas, and SRB are 3%, 10%, and 10% mesh, the prepared biologically activated lignite-immobilized SRB particles have the best effect on AMD treatment. The removal rates of SO42-, Zn2+, and Cu2+ were 83.21%, 99.59%, and 99.93%, respectively, the pH was increased to 7.43, the COD release was 523 mg/L, and the ORP value was - 134 mV. The reduction process of SO42- by the biologically activated lignite-immobilized SRB particles conforms to the pseudo-first-order kinetics, and the adsorption of Zn2+ is more in line with the Freundlich isotherm adsorption equation and the pseudo-second-order kinetic model. And it does not spread in a single form, both internal and external diffusion occur. SEM, FT-IR, and BET analysis of biologically activated lignite immobilized SRB particles showed that the pore structure is developed, has a large number of adsorption sites, and some activated groups participate in the reaction. The adsorption process of Zn2+ and Cu2+ in AMD meets the multi-layer adsorption theory.


Assuntos
Carvão Mineral , Poluentes Químicos da Água , Adsorção , Carbono/química , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química , Poluentes Químicos da Água/análise
16.
PLoS One ; 17(1): e0261823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35045075

RESUMO

The problems of acid mine drainage (AMD) in coal mine acidic wastewaters arise from a range of sources, including severe pollution with heavy metals and SO42- and difficulties during treatment. Based on the ability of Maifan stone to adsorb heavy metals and the dissimilatory reduction of SO42- by sulfate-reducing bacteria (SRB), Maifan stone-sulfate-reducing bacterium-immobilized particles were prepared via immobilization techniques using Shandong Maifan stone as the experimental material. The effects of Maifan stones containing SRB on mitigating AMD were investigated by constructing Dynamic Column 1 with Maifan stone-sulfate-reducing bacterium-immobilized particles and by constructing Dynamic Column 2 with SRB mixed with Maifan stones. By the use of adsorption isotherms, adsorption kinetics, a reduction kinetics model and X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies, the mechanism by which Maifan stone-sulfate-reducing bacterium-immobilized particles mitigate AMD was revealed. The results showed that the total effect of Maifan stone-sulfate-reducing bacterium-immobilized particles on AMD was better than that of biological Maifan stone carriers. The highest rates for the removal of Fe2+, Mn2+, and SO42- in AMD were 90.51%, 85.75% and 93.61%, respectively, and the pH value of the wastewater increased from 4.08 to 7.64. The isotherms for the adsorption of Fe2+ and Mn2+ on Maifan stone-sulfate-reducing bacterium-immobilized particles conformed to the output of the Langmuir model. The adsorption kinetics were in accordance with Lagergren first-order kinetics, and the kinetics for the reduction of SO42- conformed to those of a first-order reaction model.


Assuntos
Bactérias/crescimento & desenvolvimento , Ferro/metabolismo , Manganês/metabolismo , Mineração , Sulfatos/metabolismo , Águas Residuárias/microbiologia , Biodegradação Ambiental , Purificação da Água
17.
Sci Rep ; 12(1): 1394, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082363

RESUMO

The study aims to solve the problems of limited capacity and difficult recovery of lignite to adsort Cu2+, Zn2+ and Pb2+ in acid mine wastewater (AMD). Magnetically modified lignite (MML) was prepared by the chemical co-precipitation method. Static beaker experiments and dynamic continuous column experiments were set up to explore the adsorption properties of Cu2+, Zn2+ and Pb2+ by lignite and MML. Lignite and MML before and after the adsorption of heavy metal ions were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FTIR). Meanwhile, the adsorption mechanisms of Cu2+, Zn2+ and Pb2+ by lignite and MML were revealed by combining the adsorption isotherm model and the adsorption kinetics model. The results showed that the pH, adsorbent dosage, temperature, initial concentration of heavy metal ions, and contact time had an influence on the adsorption of Cu2+, Zn2+ and Pb2+ by lignite and MML, and the adsorption processes were more in line with the Langmuir model. The adsorption kinetics experiments showed that the adsorption processes were jointly controlled by multiple adsorption stages. The adsorption of heavy metal ions by lignite obeyed the Quasi first-order kinetic model, while the adsorption of MML was chemisorption that obeyed the Quasi second-order kinetic model. The negative ΔG and positive ΔH of Cu2+ and Zn2+ indicated the spontaneous and endothermic nature reaction, while the negative ΔH of Pb2+ indicated the exothermic nature reaction. The dynamic continuous column experiments showed that the average removal rates of Cu2+, Zn2+ and Pb2+ by lignite were 78.00, 76.97 and 78.65%, respectively, and those of heavy metal ions by MML were 82.83, 81.57 and 83.50%, respectively. Compared with lignite, the adsorption effect of MML was better. As shown by SEM, XRD and FTIR tests, Fe3O4 was successfully loaded on the surface of lignite during the magnetic modification, which made the surface morphology of lignite coarser. Lignite and MML removed Cu2+, Zn2+ and Pb2+ from AMD in different forms. In addition, the adsorption process of MML is related to the O-H stretching vibration of carboxylic acid ions and the Fe-O stretching vibration of Fe3O4 particles.

18.
RSC Adv ; 11(12): 6958-6971, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35423203

RESUMO

In recent decades, nanomaterials have been widely used in the field of biomedicine due to their unique physical and chemical properties, and have shown good prospects for in vitro diagnosis, drug delivery, and imaging. With regard to transporting nanoparticles (NPs) to target tissues or organs in the body intravenously or otherwise, blood is the first tissue that NPs come into contact with and is also considered an important gateway for targeted transport. Erythrocytes are the most numerous cells in the blood, but previous studies based on interactions between erythrocytes and NPs mostly focused on the use of erythrocytes as drug carriers for nanomedicine which were chemically bound or physically adsorbed by NPs, so little is known about the effects of nanoparticles on the morphology, structure, function, and circulation time of erythrocytes in the body. Herein, this review focuses on the mechanisms by which nanoparticles affect the structure and function of erythrocyte membranes, involving the hemocompatibility of NPs, the way that NPs interact with erythrocyte membranes, effects of NPs on erythrocyte surface membrane proteins and their structural morphology and the effect of NPs on erythrocyte lifespan and function. The detailed analysis in this review is expected to shed light on the more advanced biocompatibility of nanomaterials and pave the way for the development of new nanodrugs.

19.
RSC Adv ; 9(33): 19016-19030, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516860

RESUMO

In view of the characteristics of high content of SO4 2-, Fe2+ and Mn2+ in acid mine drainage and low pH value, based on the microbial immobilization technology, the single factor test and the orthogonal test were set respectively to determine the optimum alkaline H2O2 modification conditions for corncob. Then combining with sulfate reducing bacteria sludge, the modified corncob immobilized SRB sludge particles were prepared to treat acid mine drainage. On this basis, three dynamic column test models, including Column 1 without corncob particles, Column 2 with unmodified corncob particles, and Column 3 with modified corncob particles, were constructed. Through dynamic experiments, the three dynamic columns were compared to study the efficacy of AMD and their ability to resist changes in pollution load. The results of the orthogonal experiment showed that: when the corncob modified time was 24 h, the concentration of NaOH was 6% and the concentration of H2O2 was 1.5%, the prepared immobilized particles performed best. The results of the dynamic test showed that the treatment effect of Column 3 on AMD was better than that of Column 1 and 2. In the dynamic tests before and after the increase of pollution load, the highest removal percentages of SO4 2-, Mn2+, Fe2+ in Column 3 were 72.65%, 56.72%, 62.47% and 62.58%, 30.07%, 46.87% respectively, the average COD emission was 234 mg L-1 and 102.75 mg L-1, the effluent pH value was 6.96 and 6.65. In the dynamic tests before and after the increase of pollution load, the highest removal percentages of SO4 2-, Mn2+, Fe2+ in Column 2 were 52.94%, 46.93%, 72.55% and 48.92%, 26.43%, 43.23% respectively, the average COD emission was 508.14 mg L-1 and 152.88 mg L-1, the effluent pH value was 6.56 and 6.36. The high COD value of Column 2 is due to the organic matter leakage and poor metabolic activity of SRB contained in immobilized particles. Therefore, it indicated that Column 3 could better treat pollutants and resist changes of pollution load.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...