Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 7981-7991, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38454939

RESUMO

Vinpocetine and its derivatives were extensively employed in the treatment of ischemic stroke, serving as effective cerebrovascular vasodilators. They could also be utilized for neuroprotection, anti-inflammatory purposes, anti-aging interventions, insomnia treatment, and antidepressant effects. However, due to issues such as hepatic first-pass effect, low bioavailability, and poor patient compliance with multiple dosing, the secondary development of Vinpocetine to address these limitations became a prominent area of research. Five primary methodologies were employed for the synthesis of Vinpocetine derivatives. These included substitution on the A ring to modify the 14-ester group, alteration of the 16-ethyl group, simplification of the D and E rings, and modification of the conformation of Vinpocetine. This paper summarized the current synthesis and activity studies of Vinpocetine and its derivatives, with the aim of providing a reference for the discovery of more potent derivatives of Vinpocetine.

2.
Molecules ; 29(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202595

RESUMO

This study focuses on the synthesis of novel vinpocetine derivatives (2-25) and their biological evaluation. The chemical structures of the synthesized compounds were fully characterized using techniques such as 1H NMR, 13C NMR, and HRMS. The inhibitory activity of the synthesized compounds on PDE1A was evaluated, and the results revealed that compounds 3, 4, 5, 12, 14, 21, and 25 exhibited superior inhibitory activity compared to vinpocetine. Compound 4, with a para-methylphenyl substitution, showed a 5-fold improvement in inhibitory activity with an IC50 value of 3.53 ± 0.25 µM. Additionally, compound 25, with 3-chlorothiazole substitution, displayed an 8-fold increase in inhibitory activity compared to vinpocetine (IC50 = 2.08 ± 0.16 µM). Molecular docking studies were conducted to understand the binding models of compounds 4 and 25 within the active site of PDE1A. The molecular docking study revealed additional binding interactions, such as π-π stacking and hydrogen bonding, contributing to the enhanced inhibitory activity and stability of the ligand-protein complexes. Overall, the synthesized vinpocetine derivatives demonstrated promising inhibitory activity on PDE1A, and the molecular docking studies provided insights into their binding modes, supporting further development of these compounds as potential candidates for drug research and development.


Assuntos
Alcaloides Indólicos , Alcaloides de Vinca , Simulação de Acoplamento Molecular , Ligação de Hidrogênio , Alcaloides de Vinca/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA