Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 911: 148346, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452877

RESUMO

Noncoding RNAs (ncRNAs) have gained significant attention in recent years due to their crucial roles in various biological processes. However, our understanding of the expression and functions of ncRNAs in Cyclina sinensis, an economically important marine bivalve, remains limited. This study aimed to address this knowledge gap by systematically identifying ncRNAs in the mantles of C. sinensis with purple and white shells. Through our analysis, we identified a differential expression of 1244 mRNAs, 196 lncRNAs, 49 circRNAs, and 23 miRNAs between purple- and white-shell clams. Functional enrichment analysis revealed the involvement of these differentially expressed ncRNAs in biomineralization and pigmentation processes. To gain further insights into the regulatory mechanisms underlying shell color formation, we established competitive endogenous RNA (ceRNA) networks. These networks allowed us to identify targeted differentially expressed miRNAs (DEMis) and genes associated with shell color formation. Based on the ceRNA networks, we obtained an up-down-up lncRNA-miRNA-mRNA network consisting of 13 upregulated lncRNAs and a circRNA-miRNA-mRNA network comprising three upregulated circRNAs (novel_circ_0004787, novel_circ_0001165, novel_circ_0000245). Through these networks, we identified and selected an upregulated novel gene (evm.TU.Hic_asm_7.988) and a downregulated sponge miRNA (hru-miR-1985) as potential contributors to shell color regulation. In summary, the present investigation offers a comprehensive analysis of ncRNA catalogs expressed in the clam mantle of C. sinensis. The findings enhance our comprehension of the molecular mechanisms governing shell coloration and offer new perspectives for selective breeding of C. sinensis in the future.


Assuntos
Bivalves , MicroRNAs , RNA Longo não Codificante , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Endógeno Competitivo , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Bivalves/genética , Bivalves/metabolismo
2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834015

RESUMO

Coconut is an important tropical and subtropical fruit and oil crop severely affected by cold temperature, limiting its distribution and application. Thus, studying its low-temperature reaction mechanism is required to expand its cultivation range. We used growth morphology and physiological analyses to characterize the response of coconuts to 10, 20, and 30 d of low temperatures, combined with transcriptome and metabolome analysis. Low-temperature treatment significantly reduced the plant height and dry weight of coconut seedlings. The contents of soil and plant analyzer development (SPAD), soluble sugar (SS), soluble protein (SP), proline (Pro), and malondialdehyde (MDA) in leaves were significantly increased, along with the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the endogenous hormones abscisic acid (ABA), auxin (IAA), zeatin (ZR), and gibberellin (GA) contents. A large number of differentially expressed genes (DEGs) (9968) were detected under low-temperature conditions. Most DEGs were involved in mitogen-activated protein kinase (MAPK) signaling pathway-plant, plant hormone signal transduction, plant-pathogen interaction, biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism, carbon metabolism, starch and sucrose metabolism, purine metabolism, and phenylpropanoid biosynthesis pathways. Transcription factors (TFs), including WRKY, AP2/ERF, HSF, bZIP, MYB, and bHLH families, were induced to significantly differentially express under cold stress. In addition, most genes associated with major cold-tolerance pathways, such as the ICE-CBF-COR, MAPK signaling, and endogenous hormones and their signaling pathways, were significantly up-regulated. Under low temperatures, a total of 205 differentially accumulated metabolites (DAMs) were enriched; 206 DAMs were in positive-ion mode and 97 in negative-ion mode, mainly including phenylpropanoids and polyketides, lipids and lipid-like molecules, benzenoids, organoheterocyclic compounds, organic oxygen compounds, organic acids and derivatives, nucleosides, nucleotides, and analogues. Comprehensive metabolome and transcriptome analysis revealed that the related genes and metabolites were mainly enriched in amino acid, flavonoid, carbohydrate, lipid, and nucleotide metabolism pathways under cold stress. Together, the results of this study provide important insights into the response of coconuts to cold stress, which will reveal the underlying molecular mechanisms and help in coconut screening and breeding.


Assuntos
Cocos , Transcriptoma , Humanos , Cocos/metabolismo , Plântula/genética , Plântula/metabolismo , Resposta ao Choque Frio/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Hormônios/metabolismo , Açúcares/metabolismo , Nucleotídeos/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas
3.
Microb Ecol ; 86(4): 2981-2992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37684546

RESUMO

As one of the low-carbon and high-efficient energy sources, nuclear power is developing vigorously to alleviate the crisis of global climate warming and realize carbon neutrality goals. Meanwhile, the ecological effect of thermal drainage in the nuclear power plant is significantly remarkable, which environmental assessment system has not yet referred to microorganisms. The rapid response of microbial diversity and community structure to environmental changes is crucial for ecosystem stability. This study investigated the bacterial diversity, community construction, and the co-occurrence patterns by 16S rRNA gene amplicon sequencing among gradient warming regions in Tianwan Nuclear Power Plant. The alpha diversity of the high warming region was the lowest in summer, which was dominated by Proteobacteria, whereas the highest bacterial diversity presented in high warming regions in winter, which harbored higher proportions of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. The spatial distribution of bacterial communities showed clear separation especially in summer. Strong correlations were between community compositions and environmental factors, such as salinity, DO, TN, and temperature in summer. Furthermore, remarkable seasonality in bacterial co-occurrence patterns was discovered: the robustness of the bacterial co-occurrence network was promoted in winter, while the complexity and robustness were decreased in summer due to the warming of thermal drainage. These findings reveal the potential factors underpinning the influence of thermal drainage on bacterial community structure, which make it possible to predict the ecological effect of the nuclear power plants by exploring how the microbial assembly is likely to respond to the temperature and other environmental changes.


Assuntos
Ecossistema , Centrais Nucleares , RNA Ribossômico 16S/genética , Bactérias/genética , Drenagem , Carbono
4.
Medicine (Baltimore) ; 102(36): e35034, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682156

RESUMO

BACKGROUND: In this study, the potential mechanism of the Hu-Zhang Qing-Mai Formulation (HZQMF) on diabetic retinopathy (DR) in inhibiting oxidative stress was explored through network pharmacology analysis and in vitro experiments. METHODS: The Traditional Chinese Medicine Systematic Pharmacology Analysis Platform was used to retrieve the active pharmaceutical ingredients and targets of HZQMF. DR-related genes and oxidative stress-related genes were obtained from PharmGKB, TTD, OMIM, GeneCards, and Drugbank. STRING was used to construct a protein-protein interaction network to screen core targets. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were performed using R 4.0.3. Network topology analysis was carried out using Cytoscape 3.8.2. Finally, we looked into how well the main API protected human retinal pigment epithelial cells from damage brought on by hydrogen peroxide (H2O2). RESULTS: Quercetin (Que) was identified as the primary API of HZQMF through network pharmacology analysis, while JUN, MAPK1, and STAT3 were identified as the primary hub genes. Kyoto encyclopedia of genes and genomes enrichment analysis showed that the AGE-RAGE signaling pathway may be crucial to the therapeutic process. In vitro experiments confirmed that Que increased cell vitality and inhibited apoptosis. CONCLUSION: Que might significantly reduce H2O2-induced ARPE-19 cell injury by inhibiting apoptosis-related genes of the AGE-RAGE pathway (JUN, MAPK1, STAT3). This study lays the foundation for further research on HZQMF in treating DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Farmácia , Humanos , Farmacologia em Rede , Retinopatia Diabética/tratamento farmacológico , Peróxido de Hidrogênio , Estresse Oxidativo , Complexo Mycobacterium avium , Quercetina
5.
Membranes (Basel) ; 13(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36837700

RESUMO

Bipolar membrane electrodialysis (BMED) is a promising process for the cleaner production of organic acid. In this study, the separation mechanism of BMED with different cell configurations, i.e., BP-A, BP-A-C, and BP-C (BP, bipolar membrane; A, anion exchange membrane; C, cation exchange membrane), to produce diprotic malic acid from sodium malate was compared in consideration of the conversion ratio, current efficiency and energy consumption. Additionally, the current density and feed concentration were investigated to optimize the BMED performance. Results indicate that the conversion ratio follows BP-C > BP-A-C > BP-A, the current efficiency follows BP-A-C > BP-C > BP-A, and the energy consumption follows BP-C < BP-A-C < BP-A. For the optimized BP-C configuration, the current density was optimized as 40 mA/cm2 in consideration of low total process cost; high feed concentration (0.5-1.0 mol/L) is more feasible to produce diprotic malic acid due to the high conversion ratio (73.4-76.2%), high current efficiency (88.6-90.7%), low energy consumption (0.66-0.71 kWh/kg) and low process cost (0.58-0.59 USD/kg). Moreover, a high concentration of by-product NaOH (1.3497 mol/L) can be directly recycled to the upstream process. Therefore, BMED is a cleaner, high-efficient, low energy consumption and environmentally friendly process to produce diprotic malic acid.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35911154

RESUMO

Objective: In this study, we investigated the mechanism of Qing-Gan Li-Shui formulation (QGLSF) in treating primary open glaucoma (POAG) by network pharmacology and in vitro experiments. Methods: The active pharmaceutical ingredients (APIs) of GLQSF (prepared with Prunella vulgaris, Kudzu root, Plantago asiatica, and Lycium barbarum) were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Yet Another Traditional Chinese Medicine database (YATCM). The targets of POAG were screened out with GeneCards, OMIM, PharmGKB, Therapeutic Target Database (TTD), and DrugBank databases. The Venny platform was used to summarize the core targets. Topological analysis was performed using Cytoscape3.8.0. A protein-protein interaction network was plotted by STRING online. The key targets were subjected to GO and KEGG enrichment analyses. Finally, the effects of APIs were verified by a model of chloride hexahydrate (CoCl2)-induced retinal ganglion cells-5 (RGC-5). Results: The main APIs were selected as quercetin (Que) by network pharmacology. Nine clusters of QGLSF targets were obtained by the PPI network analysis, including AKT-1, TP53, and JUN. KEGG enrichment analysis showed that these targets were mainly involved in the AGE-RAGE signaling pathway. By in vitro experiments, Que promoted cell proliferation. The secretion of AKT-1, TP53, JUN, AGE, and RAGE in the cell culture supernatant decreased, as shown by ELISA. The mRNA levels of AKT-1, TP53, JUN, and RAGE decreased, as shown by RT-PCR. QGLSF may employ the AGE-RAGE signaling pathway to counter POAG. Conclusion: This study preliminarily elucidates the efficacy and mechanism of QGLSF in the treatment of POAG.

7.
Bioresour Technol ; 355: 127218, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35470004

RESUMO

In this study, ammonium borate was used as an additive to inhibit lignin softening during the pyrolysis process, and the influence on the pyrolysis process and product characteristics were investigated with potential mechanism being explored in depth. Results showed that with boron addition, glassy transition temperature and thermal stability of lignin increased, and the yield of gas and liquid decreased, while the content of CO, CO2 and H2 increased. Simultaneously, liquid oil showed higher content of simple phenols, especially the diphenols which the maximum reached 80% with 3%BN at 650 ℃, while the yield of heavy components (300 âˆ¼ 400 Da) decreased. With regard to B-doped char, oxygenic groups and specific surface area (509 m2/g of 5%BN at 650 ℃) increased greatly. Increasing temperature promoted the transformation of B doping form from BC2O to BCO2.


Assuntos
Lignina , Pirólise , Biocombustíveis , Boro , Temperatura Alta , Fenóis
8.
Front Immunol ; 13: 840861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359984

RESUMO

Complement proteins emerged early in evolution but outside the vertebrate clade they are poorly characterized. An evolutionary model of C3 family members revealed that in contrast to vertebrates the evolutionary trajectory of C3-like genes in cnidarian, protostomes and invertebrate deuterostomes was highly divergent due to independent lineage and species-specific duplications. The deduced C3-like and vertebrate C3, C4 and C5 proteins had low sequence conservation, but extraordinarily high structural conservation and 2-chain and 3-chain protein isoforms repeatedly emerged. Functional characterization of three C3-like isoforms in a bivalve representative revealed that in common with vertebrates complement proteins they were cleaved into two subunits, b and a, and the latter regulated inflammation-related genes, chemotaxis and phagocytosis. Changes within the thioester bond cleavage sites and the a-subunit protein (ANATO domain) explained the functional differentiation of bivalve C3-like. The emergence of domain-related functions early during evolution explains the overlapping functions of bivalve C3-like and vertebrate C3, C4 and C5, despite low sequence conservation and indicates that evolutionary pressure acted to conserve protein domain organization rather than the primary sequence.


Assuntos
Complemento C3 , Invertebrados , Sequência de Aminoácidos , Animais , Complemento C3/metabolismo , Filogenia , Especificidade da Espécie
9.
J Ophthalmol ; 2022: 3353740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620526

RESUMO

Purpose: This study aimed to measure the concentrations of ferroptosis-related biomarkers, namely, iron (Fe), lipid peroxide (LPO), reactive oxygen species (ROS), glutathione peroxidase-4 (GPX4), and glutathione (GSH) in DR in the attempt to evaluate the diagnostic performance of these biomarkers. Methods: This study included 30 NPDR patients, 30 PDR patients, and 30 healthy subjects matched in age and sex. The concentrations of Fe, LPO, ROS, GPX4, and GSH in serum of the subjects were measured. Results: Compared with the normal group, GPX4 and GSH concentrations were significantly lower, and LPO, Fe, and ROS concentrations were significantly higher in DR patients. Compared with the PDR group, the NPDR group had higher concentrations of LPO, Fe, and ROS and lower concentrations of GPX4 and GSH, but there was no statistical difference in Fe, GPX4, and GSH. ROC curve shows that ferroptosis-related biomarkers have accumulated accuracy in NPDR and PDR. Conclusion: This study shows that ferroptosis-related biomarkers may be involved in the pathological process of DR and can be used as one of the biomarkers of DR.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33513539

RESUMO

Salinity is an important ecological factor that affects physiological metabolism, survival, and distribution of marine organisms. Despite changes in the osmolarity and composition of the cytosol during salinity shifts, marine mollusks are able to maintain their metabolic function. The razor clam (Sinonovacula constricta) survives the wide range of salinity in the intertidal zone via changes in behavior and physiology. To explore the stress responses and mechanisms of salinity tolerance in razor clams, we collected transcriptomic and metabolomic data from a control group (salinity 20‰, S20) and a salinity-stress group (salinity 35‰, S35). The transcriptome data showed that genes related to the immune system, cytoskeleton remodeling, and signal transduction pathways dominated in the S35 group to counteract hypersalinity stress in the gill. The metabolomic analysis showed that 142 metabolites were significantly different between the S35 and S20 groups and that amino acid and carbohydrate metabolism were affected by hypersalinity stress. Levels of amino acids and energy substances, such as l-proline, isoleucine, and fructose, were higher in the gill of the S35 group. The combination of transcriptomic and metabolomic data indicated that metabolism of amino acids, carbohydrates, and lipids was enhanced in the gill during adaptation to high salinity. These results clarified the complex physiological processes involved in the response to hyperosmotic stress and maintenance of metabolism in the gill of razor clams. These findings provide a reference for further study of the biological responses of euryhaline shellfish to hyperosmotic stress and a molecular basis for the search for populations with high salinity tolerance.


Assuntos
Bivalves/fisiologia , Brânquias/fisiologia , Tolerância ao Sal , Animais , Bivalves/genética , Bivalves/metabolismo , Perfilação da Expressão Gênica , Brânquias/metabolismo , Metaboloma , Osmorregulação , Salinidade , Transcriptoma
11.
Artigo em Inglês | MEDLINE | ID: mdl-33161095

RESUMO

Dopamine beta-hydroxylase (DßH) plays an essential role in the synthesis of catecholamines (CA) in neuroendocrine networks. In the razor clam, Sinonovacula constricta a novel gene for DßH (ScDßH-α) was identified that belongs to the copper type II ascorbate-dependent monooxygenase family. Expression analysis revealed ScDßH-α gene transcripts were abundant in the liver and expressed throughout development. Knock-down of ScDßH-α in adult clams using siRNA caused a reduction in the growth rate compared to control clams. Reduced growth was associated with strong down-regulation of gene transcripts for the growth-related factors, platelet derived growth factors A (PDGF-A) (P < 0.001) 24 h after ScDßH-α knock-down, vascular endothelial growth factor (VEGF1) (P < 0.001) and platelet derived growth factor B (PDGF-B-2) (P < 0.001) 24 h and 48 h after ScDßH-α knock-down and transforming growth factor beta (TGF-ß1) (P < 0.001) 48 h and 72 h after ScDßH-α knock-down. Taken together the results suggest that the novel ScDßH-α gene through its role in CA synthesis is involved in growth regulation in the razor clam and possibly other bivalves.


Assuntos
Bivalves/crescimento & desenvolvimento , Bivalves/genética , Sequência de Aminoácidos , Animais , Bivalves/imunologia , Bivalves/metabolismo , Clonagem Molecular/métodos , DNA Complementar/genética , Dopamina beta-Hidroxilase/antagonistas & inibidores , Dopamina beta-Hidroxilase/genética , Dopamina beta-Hidroxilase/metabolismo , Técnicas de Silenciamento de Genes , Imunidade Inata , Filogenia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Interferência de RNA , Homologia de Sequência , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Mar Biotechnol (NY) ; 22(5): 696-705, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32886280

RESUMO

The razor clam, Sinonovacula constricta, is an important economic marine shellfish, and its larval development involves obvious morphological and physiological changes. MicroRNA plays a key role in the physiological changes of the organism through regulating targeted mRNA. This study performed miRNA-mRNA sequencing for eight different developmental stages of S. constricta using Illumina sequencing. A total of 2156 miRNAs were obtained, including 2069 known miRNAs and 87 novel miRNAs. In addition, target genes were predicted for key miRNAs differentially expressed between adjacent development samples by integrating the mRNA transcriptome. Further analysis revealed that the differentially expressed genes were enriched in complement activation, alternative pathways, translation, and negative regulation of monocyte molecular protein-1 production. KEGG pathway annotation showed significant enrichment in the regulation of the ribosome, phagosome, tuberculosis and fluid shear stress, and atherosclerosis. Ten mRNAs and ten miRNAs that are related to larval metamorphosis were identified using real-time PCR. Furthermore, the double luciferase experiment validated the negative regulatory relationship between miR-133 and peroxisome proliferator-activated receptor-γ (PPAR-γ). These results indicated that the target genes regulated by these differentially expressed miRNAs may play an important regulatory role in the metamorphosis development of S. constricta.


Assuntos
Bivalves/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Metamorfose Biológica/genética , Análise de Sequência de RNA
13.
Bioresour Technol ; 310: 123498, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32422556

RESUMO

In this study, the pyrolysis process of 20 kinds of biomass samples in 3 types (stalk-type, wood-type and shell-type) was investigated with thermogravimetric analyzer, and the correlation of biomass pyrolysis property with biomass chemical structure was put forward. The results showed that the pyrolysis of the 20 kinds of biomass can be classified by types as the pyrolysis of stalk-type biomass had an overlapping decomposition peak of hemicellulose and cellulose at 317 °C. However, the pyrolysis of wood-type and shell-type biomass showed two separated peaks at low temperature and the cellulose peak was higher in wood-type biomass (365 °C) compared to shell-type biomass (348 °C). The different pyrolysis process mentioned above could be due to the positive correlation between cellulose crystallinity and the decomposition temperature of cellulose as well as the activation energy at the decomposition stage of cellulose.


Assuntos
Celulose , Madeira , Biomassa , Cinética , Pirólise , Termogravimetria
14.
iScience ; 23(6): 101148, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32454450

RESUMO

Bivalve mollusks are economically important invertebrates that exhibit marked diversity in benthic lifestyle and provide valuable resources for understanding the molecular basis of adaptation to benthic life. In this report, we present a high-quality, chromosome-anchored reference genome of the Venus clam, Cyclina sinensis. The chromosome-level genome was assembled by Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, 10× Genomics, and high-throughput chromosome conformation capture technologies. The final genome assembly of C. sinensis is 903.2 Mb in size, with a contig N50 size of 2.6 Mb and a scaffold N50 size of 46.5 Mb. Enrichment analyses of significantly expanded and positively selected genes suggested evolutionary adaptation of this clam to buried life. In addition, a change in shell color represents another mechanism of adaptation to burial in sediment. The high-quality genome generated in this work provides a valuable resource for investigating the molecular mechanisms of adaptation to buried lifestyle.

15.
Gene ; 737: 144418, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32006597

RESUMO

Dopamine beta-hydroxylase (DßH) plays a key role in the synthesis of catecholamines (CAs) in the neuroendocrine regulatory network. The DßH gene was identified from the razor clam Sinonovacula constricta and referred to as ScDßH. The ScDßH gene is a copper type II ascorbate-dependent monooxygenase with a DOMON domain and two Cu2_monooxygen domains. ScDßH transcript expression was abundant in liver and hemolymph. During early development, ScDßH expression significantly increased at the umbo larval stage. Furthermore, the inhibitors and siRNA of DßH were screened. After challenge with DßH inhibitor, the larval metamorphosis and survival rates, and juvenile growth were obviously decreased. Under the siRNA stress, the larval metamorphosis and survival rates were also significantly decreased. Therefore, ScDßH may play an important regulating role in larval metamorphosis and juvenile growth.


Assuntos
Bivalves/crescimento & desenvolvimento , Dopamina beta-Hidroxilase/metabolismo , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Sequência de Aminoácidos , Animais , Bivalves/genética , DNA Complementar/genética , Dopamina beta-Hidroxilase/química , Dopamina beta-Hidroxilase/genética , Filogenia , RNA Interferente Pequeno/genética , Homologia de Sequência de Aminoácidos
16.
Dev Comp Immunol ; 103: 103512, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31585193

RESUMO

The dopamine (DA) D2 receptor is a member of the G protein-coupled receptors of organisms and plays an important role in immune system regulation. The presence of DA receptors has been widely reported in vertebrates, but few studies have been conducted in shellfish. Here, we identified a novel DA-D2 receptor gene, ScDopR2-1, in the razor clam Sinonovacula constricta. ScDopR2-1 belongs to the family of G protein-coupled receptors, containing seven hydrophobic transmembrane domains, along with 16 predicted N-glycosylation sites and 69 phosphorylation sites. A longer third intracellular loop and a shorter C-terminus in ScDopR2-1 are characteristic features of D2 receptors. ScDopR2-1 is widely expressed in tissues from adult clams, showing high expression in siphon and foot tissues. Furthermore, in response to Vibrio anguillarum challenge, ScDopR2-1 expression levels are significantly increased in liver tissue. Moreover, changes in the activities of catalase (CAT) and superoxide dismutase (SOD) also indicate that the organism causes an immune response. In summary, the results indicate that ScDopR2-1 plays a pivotal role in antioxidant responses in S. constricta.


Assuntos
Antioxidantes/metabolismo , Bivalves/imunologia , Imunidade Inata/imunologia , Receptores Dopaminérgicos/imunologia , Animais , Bivalves/metabolismo , Catalase/metabolismo , Receptores Dopaminérgicos/metabolismo , Superóxido Dismutase/metabolismo , Vibrio/imunologia , Vibrioses/imunologia , Vibrioses/veterinária
17.
PLoS One ; 14(12): e0226698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31856263

RESUMO

Estradiol is an important sex steroid hormone that is involved in the regulation of crustacean ovarian development. However, the molecular regulatory mechanisms of estradiol on ovarian development are largely unknown. This study performed transcriptome sequencing of ovary, hepatopancreas, brain ganglion, eyestalk, and mandibular organ of crabs after estradiol treatment (0.1µg g-1 crab weight). A total of 23, 806 genes were annotated, and 316, 1300, 669, 142, 383 genes were expressed differently in ovary, hepatopancreas, brain ganglion, eyestalk, and mandibular organ respectively. Differentially expressed gene enrichment analysis revealed several crucial pathways including protein digestion and absorption, pancreatic secretion, insect hormone biosynthesis, drug metabolism-cytochrome P450 and signal transduction pathway. Through this study, some key genes in correlation with the ovarian development and nutrition metabolism were significantly affected by estradiol, such as vitelline membrane outer layer 1-like protein, heat shock protein 70, Wnt5, JHE-like carboxylesterase 1, cytochrome P302a1, crustacean hyperglycemic hormone, neuropeptide F2, trypsin, carboxypeptidase B, pancreatic triacylglycerol lipase-like, and lipid storage droplet protein. Moreover, RT-qPCR validation demonstrated that expression of transcripts related to ovarian development (vitelline membrane outer layer 1-like protein and cytochrome P302a1) and nutrition metabolism (trypsin, glucose dehydrogenase and lipid storage droplet protein) were significantly affected by estradiol treatment. This study not only has identified relevant genes and several pathways that are involved in estradiol regulation on ovarian development of P. trituberculatus, but also provided new insight into the understanding of the molecular function mechanisms of estradiol in crustacean.


Assuntos
Braquiúros/metabolismo , Estradiol/metabolismo , Ovário/metabolismo , Transcriptoma , Animais , Braquiúros/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Anotação de Sequência Molecular , Ovário/crescimento & desenvolvimento
18.
BMC Biotechnol ; 19(1): 99, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856784

RESUMO

BACKGROUND: To avoid destructive sampling for conservation and genetic assessment, we isolated the DNA of clam Cyclina sinensis from their feces. DNA electrophoresis and PCR amplification were used to determine the quality of fecal DNA. And we analyzed the effects of different conditions on the degradation of feces and fecal DNA. RESULTS: The clear fecal DNA bands were detected by electrophoresis, and PCR amplification using clam fecal DNA as template was effective and reliable, suggesting that clam feces can be used as an ideal material for noninvasive DNA isolation. In addition, by analyzing the effects of different environmental temperatures and soaking times on the degradation of feces and fecal DNA, we found that the optimum temperature was 4 °C. In 15 days, the feces maintained good texture, and the quality of fecal DNA was good. At 28 °C, the feces degraded in 5 days, and the quality of fecal DNA was poor. CONCLUSIONS: The clam feces can be used as an ideal material for noninvasive DNA isolation. Moreover, the quality of fecal DNA is negatively correlated with environmental temperature and soaking time.


Assuntos
Bivalves/genética , DNA/genética , Fezes/química , Animais , DNA/isolamento & purificação , Primers do DNA/genética , Reação em Cadeia da Polimerase
19.
PeerJ ; 7: e7781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737440

RESUMO

Flatfish undergo extreme morphological development and settle to a benthic in the adult stage, and are likely to be more susceptible to environmental stress. Heat shock proteins 70 (hsp70) are involved in embryonic development and stress response in metazoan animals. However, the evolutionary history and functions of hsp70 in flatfish are poorly understood. Here, we identified 15 hsp70 genes in the genome of Japanese flounder (Paralichthys olivaceus), a flatfish endemic to northwestern Pacific Ocean. Gene structure and motifs of the Japanese flounder hsp70 were conserved, and there were few structure variants compared to other fish species. We constructed a maximum likelihood tree to understand the evolutionary relationship of the hsp70 genes among surveyed fish. Selection pressure analysis suggested that four genes, hspa4l, hspa9, hspa13, and hyou1, showed signs of positive selection. We then extracted transcriptome data on the Japanese flounder with Edwardsiella tarda to induce stress, and found that hspa9, hspa12b, hspa4l, hspa13, and hyou1 were highly expressed, likely to protect cells from stress. Interestingly, expression patterns of hsp70 genes were divergent in different developmental stages of the Japanese flounder. We found that at least one hsp70 gene was always highly expressed at various stages of embryonic development of the Japanese flounder, thereby indicating that hsp70 genes were constitutively expressed in the Japanese flounder. Our findings provide basic and useful resources to better understand hsp70 genes in flatfish.

20.
FASEB J ; 33(12): 13323-13333, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550175

RESUMO

Complement factor B/C2 family (Bf/C2F) proteins are core complement system components in vertebrates that are absent in invertebrates and have been lost by numerous species, raising evolutionary questions. At least 3 duplication events have occurred from Cnidaria (ancestor) to mammals. Type II Bf/C2 genes appeared during separation of Proterostomia and Deuterostomes. The second event occurred during separation of vertebrates and invertebrates, yielding type II-2 Bf/C2. The third event occurred when jawed and jawless fish were separated, eventually producing Bf and C2 genes. Herein, we report the second mollusc Sinonovacula constricta Bf/C2-type gene (ScBf). ScBf is similar to Ruditapes decussatus Bf-like because both lack the first complement control protein module at the N terminus present in mammalian Bf/C2 proteins. Uniquely, the Ser protease (SP) module at the C terminus of ScBf is ∼50 aa longer than in other complement factor B/C2-type (Bf/C2T) proteins, and is Glu-rich. Bf/C2T proteins in molluscs lack the catalytic Ser in the SP module. Surprisingly, ScBf regulates rabbit erythrocyte agglutination, during which it is localized on the erythrocyte surface. Thus, ScBf may mediate the agglutination cascade and may be an upstream regulator of this process. Our findings provide new insight into the origin of the Bf/C2F.-Peng, M., Li, Z., Niu, D., Liu, X., Dong, Z., Li, J. Complement factor B/C2 in molluscs regulates agglutination and illuminates evolution of the Bf/C2 family.


Assuntos
Infecções Bacterianas/veterinária , Complemento C2/metabolismo , Fator B do Complemento/metabolismo , Eritrócitos/patologia , Evolução Molecular , Doenças dos Peixes/patologia , Aglutinação , Animais , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Complemento C2/genética , Fator B do Complemento/genética , Eritrócitos/metabolismo , Eritrócitos/microbiologia , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Moluscos , Filogenia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...