Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Behav Neurosci ; 18: 1348898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440257

RESUMO

Background: Three phases are often involved in the intricate process of wound healing: inflammatory exudation, cell proliferation, and tissue remodeling. It is challenging for wounds to heal if conditions like ischemia, persistent pressure, infection, repetitive trauma, or systemic or localized illnesses arise during the healing process. Chronic wounds are persistent injuries that do not follow the normal healing process and fail to progress through the stages of healing within a reasonable timeframe, like diabetic ulcers, vascular ulcers, pressure sores, and infectious wounds. Various factors affect chronic wound healing. A large body of research has illuminated that psychological distress may often be related to wound healing in clinical settings. Our observations have indicated that the pace of wound healing in diabetic mice is generally slower than that of healthy mice, and mice induced by streptozotocin (STZ) and fed a high-fat diet generally exhibit depression-like behavior. Our experiment delves into whether there is an inherent correlation and provides new ideas for clinical treatment to promote wound healing. Methods: In order to explore the relationship between diabetes, depression, and wound healing, we observed wound healing through HE staining, Masson's trichrome staining, and IHC staining for CD31 and detected the depressive condition through behavioral tests. Then, RT-PCR was used to detect the mRNA expression levels of α-SMA, Col1, CD31, and VEGF in wound tissue. Finally, the related brain areas were regulated through chemical genetic methods and the process of wound healing was observed. Conclusion: It has been observed that the lateral habenula (LHb) areas are associated with depression-like behavior induced by diabetes. Inhibiting LHb neuronal activity mitigates these depressive symptoms and enhances wound healing. Refractory wounds can be improved by considering patients' emotional issues from a broad standpoint, which provides fresh concepts for potential clinical treatments in the future.

2.
Stem Cell Res Ther ; 15(1): 25, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287398

RESUMO

BACKGROUND: Autologous fat grafting is hampered by unpredictable graft survival, which is potentially regulated by ferroptosis. Glutathione (GSH), a powerful antioxidant used in tissue preservation, has ferroptosis-regulating activity; however, its effects on fat grafts are unclear. This study investigated the effects and mechanisms of GSH in fat graft survival. METHODS: Human lipoaspirates were transplanted subcutaneously into the backs of normal saline-treated (control) or GSH-treated nude mice. Graft survival was evaluated by magnetic resonance imaging and histology. RNA sequencing was performed to identify differentially expressed genes and enriched pathways. GSH activity was evaluated in vitro using an oxygen and glucose deprivation (OGD) model of adipose-derived stem cells. RESULTS: Compared with control group, GSH induced better outcomes, including superior graft retention, appearance, and histological structures. RNA sequencing suggested enhanced negative regulation of ferroptosis in the GSH-treated grafts, which showed reduced lipid peroxides, better mitochondrial ultrastructure, and SLC7A11/GPX4 axis activation. In vitro, OGD-induced ferroptosis was ameliorated by GSH, which restored cell proliferation, reduced oxidative stress, and upregulated ferroptosis defense factors. CONCLUSIONS: Our study confirms that ferroptosis participates in regulating fat graft survival and that GSH exerts a protective effect by inhibiting ferroptosis. GSH-assisted lipotransfer is a promising therapeutic strategy for future clinical application.


Assuntos
Ferroptose , Humanos , Animais , Camundongos , Sobrevivência de Enxerto , Camundongos Nus , Glutationa , Glucose , Suplementos Nutricionais , Sistema y+ de Transporte de Aminoácidos
3.
Stem Cell Rev Rep ; 20(1): 313-328, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874529

RESUMO

Although Mesenchymal Stem Cells (MSCs)-based therapy has been proposed as a promising strategy for the treatment of chronic lower-extremity ulcers, their optimal sources, amounts, and delivery methods are urgently needed to be determined. In this study, we compared the heterogeneity of the human MSCs derived from bone marrow (BMSCs), umbilical cord (UCMSCs), and adipose tissue (ADSCs) in accelerating wound healing and promoting angiogenesis and explored the underlying mechanism. Briefly, a diabetic rat model with a full-thickness cutaneous wound on the dorsal foot was developed. The wound was topically administered with three types of MSCs. Additionally, we carried out in vitro and in vivo analysis of the angiogenic properties of the MSCs. Moreover, the molecular mechanism of the heterogeneity of the MSCs derived from the three tissues was explored by transcriptome sequencing. When compared with the BMSCs- and UCMSCs-treated groups, the ADSCs-treated group exhibited markedly accelerated healing efficiency, characterized by increased wound closure rates, enhanced angiogenesis, and collagen deposition at the wound site. The three types of MSCs formed three-dimensional capillary-like structures and promoted angiogenesis in vitro and in vivo, with ADSCs exhibiting the highest capacity for tube formation and pro-angiogenesis. Furthermore, transcriptome sequencing revealed that ADSCs had higher expression levels of angiogenesis-associated genes. Our findings indicate that MSCs-based therapy accelerates the healing of ischemia- and diabetes-induced lower-extremity ulcers and that adipose tissue-derived MSCs might be ideal for therapeutic angiogenesis and treatment of chronic ischemic wounds.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Angiogênese , Úlcera/metabolismo , Neovascularização Fisiológica/genética , Células-Tronco Mesenquimais/metabolismo , Cicatrização/genética
4.
J Food Sci ; 88(5): 2023-2035, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995349

RESUMO

Pulsed electric field (PEF), as an emerging nonthermal processing technology, has attracted extensive attention and research in food processing. In the present study, PEF has been approved that has the potential to enhance salt diffusion in pork. In this study, pork lions were pretreated with PEF before being immersed in the brine (5% NaCl [w/w]) at 4°C to investigate the effect of needle-needle PEF pretreatment on pork brine salting. The changes in the weight, moisture, and salt content were detected during the salting process. The effective diffusion coefficient (De) and mass transfer kinetics were calculated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were subsequently used to analyze the microstructure of the pork and the secondary structure of myofibrillar proteins (MPs). The outcomes demonstrated that after brining for 8 h with PEF pretreatment, the weight, moisture, and salt changes increased significantly. The central salt content achieved by 12 h brining after PEF treatment (4.5 kV) is equivalent to that achieved by brining for 20 h without any treatment. The De was raised to 4.0 × 10-10 (PEF) from 3.1 × 10-10 (control). SEM and FTIR results revealed that PEF altered the microstructure of pork and the secondary structure of MP. Our study demonstrated that PEF generated by needle-needle electrodes could effectively promote salt diffusion and shorten salting processing.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Cloreto de Sódio , Sais/química , Cloreto de Sódio na Dieta
5.
Foodborne Pathog Dis ; 19(2): 159-167, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34898276

RESUMO

Although plasma, especially atmospheric plasma generated by corona discharge, has been proven to be effective in sterilization and food preservation, its disinfection mechanism on chilled pork is poorly understood. In this research, the bactericidal and preservation effect of corona discharge plasma (CDP) was investigated. The maximum bactericidal effect was found after 20 kV 4 kHz CDP treatment, with 2.77 log (colony-forming unit [CFU]/g), 2.41 log (CFU/g), and 1.36 log (CFU/g) reduction for Pantoea agglomerans, Serratia liquefaciens, and Kurthia zopfii, respectively, after 10 min of exposure. The efficiency of microbial inactivation was attributed to the increase of ozone, hydrogen peroxide and morphological changes. It was observed that the microbial level and total volatile binding nitrogen value of CDP-treated chilled pork samples were suppressed during storage, whereas the increase of thiobarbituric acid reactive substances value and the changes of color were still worthy of attention. The aim of this study was to explore the effect of pulsed CDP on the inactivation of spoilage microorganism inoculated on the surface of fresh pork. The prospect of this technology in meat preservation industry was also investigated.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Viabilidade Microbiana , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...