Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(22): 14469-14486, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770948

RESUMO

Glioblastoma (GBM) is a lethal brain tumor with high levels of malignancy. Most chemotherapy agents show serious systemic cytotoxicity and restricted delivery effectiveness due to the impediments of the blood-brain barrier (BBB). Immunotherapy has developed great potential for aggressive tumor treatments. Disappointingly, its efficacy against GBM is hindered by the immunosuppressive tumor microenvironment (TME) and BBB. Herein, a multiple synergistic immunotherapeutic strategy against GBM was developed based on the nanomaterial-biology interaction. We have demonstrated that this BM@MnP-BSA-aPD-1 can transverse the BBB and target the TME, resulting in amplified synergetic effects of metalloimmunotherapy and photothermal immunotherapy (PTT). The journey of this nanoformulation within the TME contributed to the activation of the stimulator of the interferon gene pathway, the initiation of the immunogenic cell death effect, and the inhibition of the programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) signaling axis. This nanomedicine revitalizes the immunosuppressive TME and evokes the cascade effect of antitumor immunity. Therefore, the combination of BM@MnP-BSA-aPD-1 and PTT without chemotherapeutics presents favorable benefits in anti-GBM immunotherapy and exhibits immense potential for clinical translational applications.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoterapia , Microglia , Microambiente Tumoral , Glioblastoma/terapia , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Humanos , Animais , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Terapia Fototérmica , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo
2.
ACS Nano ; 17(3): 2341-2355, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688797

RESUMO

Immunotherapy has had a profound positive effect on certain types of cancer but has not improved the outcomes of glioma because of the blood-brain barrier (BBB) and immunosuppressive tumor microenvironment. In this study, we developed an activated mature dendritic cell membrane (aDCM)-coated nanoplatform, rapamycin (RAPA)-loaded poly(lactic-co-glycolic acid) (PLGA), named aDCM@PLGA/RAPA, which is a simple, efficient, and individualized strategy to cross the BBB and improve the immune microenvironment precisely. In vitro cells uptake and the transwell BBB model revealed that the aDCM@PLGA/RAPA can enhance homotypic-targeting and BBB-crossing efficiently. According to the in vitro and in vivo immune response efficacy of aDCM@PLGA/RAPA, the immature dendritic cells (DCs) could be stimulated into the matured status, which leads to further activation of immune cells, such as tumor-infiltrating T cells and natural killer cells, and can induce the subsequent immune responses through direct and indirect way. The aDCM@PLGA/RAPA treatment can not only inhibit glioma growth significantly but also has favorable potential ability to induce glial differentiation in the orthotopic glioma. Moreover, the aDCM@PLGA could induce a robust CD8+ effector and therefore suppress orthotopic glioma growth in a prophylactic setup, which indicates certain tumor immunity. Overall, our work provides an effective antiglioma drug delivery system which has great potential for tumor combination immunotherapy.


Assuntos
Glioma , Nanopartículas , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Biomimética , Glioma/tratamento farmacológico , Antígenos de Neoplasias/metabolismo , Imunidade , Células Dendríticas , Microambiente Tumoral
3.
Cancer Med ; 10(11): 3674-3688, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33973730

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent malignant diseases in the urinary system with more than 140,000 related deaths annually. Ubiquitination-deubiquitination homeostasis is an important factor in ccRCC progression; ubiquitin-specific peptidase 53 (USP53) belongs to the family of deubiquitinating enzymes, but its functions are rarely reported. METHODS: Databases obtained from GEO and TCGA were analyzed to reveal the role of USP53 in ccRCC. CCK-8/BrdU and EDU assays were used to detect the proliferation of ccRCC after USP53 overexpression or knockdown. A tumor xenograft experiment was used to verify the effect of the proliferation of ccRCC after USP53 knockdown. Transwell assays were used to detect the metastasis of ccRCC after USP53 overexpression or knockdown. RNA sequencing and western blot analysis were employed to detect the change in genes after USP53 overexpression and knockdown. Then we tested the effect of USP53 on IκBα protein stability through western blot analysis. Detect the effect of USP53 on IκBα ubiquitination in vitro by immunoprecipitation method. RESULTS: USP53 expression was downregulated in ccRCC tissues and USP53 expression was significantly negatively correlated with the tumor progression and clinical prognosis. The ability of growth and metastasis of ccRCC was inhibited after USP53 overexpression. In addition, USP53 knockdown promoted ccRCC growth and metastasis. Moreover, USP53 knockdown promoted the ability of clone formation of ccRCC in vivo. NF-κB signaling pathway significantly enriched and downregulated in USP53 overexpressed cells, and genes in the NF-κB pathway (such as IL1B, CXCL1-3, RELA, RELB, etc.) were obviously downregulated in USP53 overexpressed cells. USP53 overexpression decreased the phosphorylation of IKKß and P65 in both Caki-1 and 786-O cells, and the expression of IκBα was increased. Phosphorylation of IKKß and P65 was increased in both Caki-1 and 786-O cells after USP53 knockdown. As the expression of USP53 increases, the protein expression of IκBα was also gradually increased and USP53 reduced the ubiquitination of IκBα. CONCLUSION: In summary, our data indicate that USP53 inhibits the inactivation of the NF-κB pathway by reducing the ubiquitination of IκBα to further inhibit ccRCC proliferation and metastasis. These findings may help understand the pathogenesis of ccRCC and introduce new potential therapeutic targets for kidney cancer patients.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteínas de Neoplasias/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/secundário , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Bases de Dados Genéticas , Regulação para Baixo , Feminino , Inativação Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidor de NF-kappaB alfa/genética , Fosforilação , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
4.
Hepatology ; 71(1): 93-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31222801

RESUMO

Activation of apoptosis signal-regulating kinase 1 (ASK1) is a key driving force of the progression of nonalcoholic steatohepatitis (NASH) and represents an attractive therapeutic target for NASH treatment. However, the molecular and cellular mechanisms underlying ASK1 activation in the pathogenesis of NASH remain incompletely understood. In this study, our data unequivocally indicated that hyperactivated ASK1 in hepatocytes is a potent inducer of hepatic stellate cell (HSC) activation by promoting the production of hepatocyte-derived factors. Our previous serial studies have shown that the ubiquitination system plays a key role in regulating ASK1 activity during NASH progression. Here, we further demonstrated that tumor necrosis factor receptor-associated factor 6 (TRAF6) promotes lysine 6 (Lys6)-linked polyubiquitination and subsequent activation of ASK1 to trigger the release of robust proinflammatory and profibrotic factors in hepatocytes, which, in turn, drive HSC activation and hepatic fibrosis. Consistent with the in vitro findings, diet-induced liver inflammation and fibrosis were substantially attenuated in Traf6+/- mice, whereas hepatic TRAF6 overexpression exacerbated these abnormalities. Mechanistically, Lys6-linked ubiquitination of ASK1 by TRAF6 facilitates the dissociation of thioredoxin from ASK1 and N-terminal dimerization of ASK1, resulting in the boosted activation of ASK1-c-Jun N-terminal kinase 1/2 (JNK1/2)-mitogen-activated protein kinase 14(p38) signaling cascade in hepatocytes. Conclusion: These results suggest that Lys6-linked polyubiquitination of ASK1 by TRAF6 represents a mechanism underlying ASK1 activation in hepatocytes and a key driving force of proinflammatory and profibrogenic responses in NASH. Thus, inhibiting Lys6-linked polyubiquitination of ASK1 may serve as a potential therapeutic target for NASH treatment.


Assuntos
Apoptose , Hepatite/etiologia , Hepatócitos , Cirrose Hepática/etiologia , MAP Quinase Quinase Quinase 5/metabolismo , Fator 6 Associado a Receptor de TNF/fisiologia , Ubiquitinação , Animais , Lisina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA