Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.887
Filtrar
1.
Anal Chem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953495

RESUMO

Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.

2.
Mol Med Rep ; 30(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38963039

RESUMO

 The incidence of Alzheimer's disease (AD) is rising globally, yet its treatment and prediction of this condition remain challenging due to the complex pathophysiological mechanisms associated with it. Consequently, the objective of the present study was to analyze and characterize the molecular mechanisms underlying ferroptosis­related genes (FEGs) in the pathogenesis of AD, as well as to construct a prognostic model. The findings will provide new insights for the future diagnosis and treatment of AD. First, the AD dataset GSE33000 from the Gene Expression Omnibus database and the FEGs from FerrDB were obtained. Next, unsupervised cluster analysis was used to obtain the FEGs that were most relevant to AD. Subsequently, enrichment analyses were performed on the FEGs to explore biological functions. Subsequently, the role of these genes in the immune microenvironment was elucidated through CIBERSORT. Then, the optimal machine learning was selected by comparing the performance of different machine learning models. To validate the prediction efficiency, the models were validated using nomograms, calibration curves, decision curve analysis and external datasets. Furthermore, the expression of FEGs between different groups was verified using reverse transcription quantitative PCR and western blot analysis. In AD, alterations in the expression of FEGs affect the aggregation and infiltration of certain immune cells. This indicated that the occurrence of AD is strongly associated with immune infiltration. Finally, the most appropriate machine learning models were selected, and AD diagnostic models and nomograms were built. The present study provided novel insights that enhance understanding with regard to the molecular mechanism of action of FEGs in AD. Moreover, the present study provided biomarkers that may facilitate the diagnosis of AD.


Assuntos
Doença de Alzheimer , Ferroptose , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Ferroptose/genética , Humanos , Aprendizado de Máquina , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Biomarcadores , Prognóstico , Regulação da Expressão Gênica , Biologia Computacional/métodos
3.
Free Radic Biol Med ; 222: 456-466, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950659

RESUMO

Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.

4.
Transl Res ; 272: 126-139, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823437

RESUMO

This study investigates the role of dendritic cells (DCs), with a focus on their CXCL10 marker gene, in the activation of cytotoxic T lymphocytes (CTLs) within the ovarian cancer microenvironment and its impact on disease progression. Utilizing scRNA-seq data and immune infiltration analysis, we identified a diminished DC presence in ovarian cancer. Gene analysis pinpointed CXCL10 as a key regulator in OV progression via its influence on DCs and CTLs. Prognostic analysis and in vitro experiments substantiated this role. Our findings reveal that DC-derived CXCL10 significantly affects CTL activation and proliferation. Reduced CXCL10 levels hinder CTL cytotoxicity, promoting ovarian cancer cell migration and invasion. Experimental studies using animal models have provided further evidence that the capacity of CTLs to suppress tumor development is significantly diminished when treated with DCs that have low expression of CXCL10. Dendritic cell-derived CXCL10 emerges as a pivotal factor in restraining ovarian cancer growth and metastasis through the activation of cytotoxic T lymphocytes. This study sheds light on the crucial interplay within the ovarian cancer microenvironment, offering potential therapeutic targets for ovarian cancer treatment.

5.
Front Neurosci ; 18: 1422442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894941

RESUMO

Spinocerebellar ataxia is a phenotypically and genetically heterogeneous group of autosomal dominant-inherited degenerative disorders. The gene mutation spectrum includes dynamic expansions, point mutations, duplications, insertions, and deletions of varying lengths. Dynamic expansion is the most common form of mutation. Mutations often result in indistinguishable clinical phenotypes, thus requiring validation using multiple genetic testing techniques. Depending on the type of mutation, the pathogenesis may involve proteotoxicity, RNA toxicity, or protein loss-of-function. All of which may disrupt a range of cellular processes, such as impaired protein quality control pathways, ion channel dysfunction, mitochondrial dysfunction, transcriptional dysregulation, DNA damage, loss of nuclear integrity, and ultimately, impairment of neuronal function and integrity which causes diseases. Many disease-modifying therapies, such as gene editing technology, RNA interference, antisense oligonucleotides, stem cell technology, and pharmacological therapies are currently under clinical trials. However, the development of curative approaches for genetic diseases remains a global challenge, beset by technical, ethical, and other challenges. Therefore, the study of the pathogenesis of spinocerebellar ataxia is of great importance for the sustained development of disease-modifying molecular therapies.

6.
Phytochemistry ; 225: 114171, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844058

RESUMO

Seven undescribed abietane diterpenoids [abietamethinols A-G (1-7)] were isolated from the twigs and leaves of Isodon amethystoides. Their structures were elucidated on the basis of spectroscopic methods including 2D NMR, and they were further confirmed by X-ray crystallographic data. Lophanic acid was considered as the precursor of 1-7 in the biosynthesis pathway hypothesis. These compounds were evaluated for their cytotoxic, anti-bacterial and anti-AIV (avian influenza virus) activities. Compound 5 showed 42.9% inhibitory activity against the cancer cell line SMMC-7721 at the concentration of 40 µM, 3 and 4 could inhibit the bacterial growth of Streptococcus sobrinus by 55.3% and 63.2% at the concentrations of 148.6 and 141.9 µM, respectively, and 4 was demonstrated with antiviral activity against AIV with the inhibitory effect of 68.4% at 25 µM.

7.
Toxicol In Vitro ; 99: 105876, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876226

RESUMO

Fangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms. Our results showed that FA did not affect meiosis resumption but inhibited the first polar body extrusion. This inhibition is not due to abnormalities at the organelle level, such as chromosomes and mitochondrial, which was proved by detection of DNA damage and reactive oxygen species. Further studies revealed that FA arrested the oocyte at the metaphase I stage, and this arrest was not caused by abnormal kinetochore-microtubule attachment or spindle assembly checkpoint activation. Instead, FA inhibits the activity of anaphase-promoting complexes (APC/C), as evidenced by the inhibition of CCNB1 degeneration. The decreased activity of APC/C may be due to a reduction in CDC25B activity as indicated by the high phosphorylation level of CDC25B (Ser323). This may further enhance Maturation-Promoting Factor (MPF) activity, which plays a critical role in meiosis. In conclusion, our study suggests that the metaphase I arrest caused by FA may be due to abnormalities in MPF and APC/C activity.

8.
Langmuir ; 40(25): 13276-13291, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38861685

RESUMO

Supercritical pseudoboiling was proposed in the 1950s-1960s. Recently, evaporation-like and boiling-like heat transfer have been directly observed in macroscopic scales, and the contribution of pseudoboiling to the total heat transfer rate has been quantitatively characterized experimentally. Here, we explore the critical threshold to generate a bubble-like nucleus at supercritical pressure at the atomic scale, characterized by the total energy (Te = Ke + Pe, where Ke and Pe are kinetic energy and potential energy, respectively). Molecular dynamics simulations are performed, including an argon fluid box heated by a solid wall having its temperature above the fluid temperature. The fluid pressure is controlled by a movable piston wall opposite the heating wall. The effects of pressure, nonuniform heating, and surface wettability on pseudoboiling are investigated. It is found that the criterion Te > 0 should be satisfied for subcritical boiling, matching that reported previously. The criterion for supercritical pseudoboiling was newly obtained such that Te > 0.012 eV at 8 MPa for argon, but the threshold increases as pressure increases. Nonuniform heating and surface wettability do not affect the critical threshold of Te for bubble-like nucleation but affect the location of the initially generated bubble-like nucleus and the stabilized pseudofilm or pseudonucleate heat transfer modes, where the former is similar to (vapor) film boiling and the latter is similar to nucleate boiling at subcritical pressure. Because pseudoboiling occurs without surface tension at supercritical pressure, we observe that the bubble-like structure may not display a perfectly smooth gas-liquid interface but may display an irregular pattern instead. Our work explains pseudoboiling from the viewpoint of the competition between kinetic energy and potential energy and presents a link regarding boiling in the two domains of subcritical pressure and supercritical pressure.

9.
Oncol Rep ; 52(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847273

RESUMO

Pancreatic cancer (PC) is a malignant tumor possessing high mortality. The role of transcription factor Forkhead Box F2 (FOXF2) in PC remains unverified. The current study investigated the roles of FOXF2 in developing PC in vitro and in vivo. A xenograft tumor model was constructed with nude mice injected using FOXF2­overexpressing PC cells or FOXF2­silenced PC cells. High FOXF2 expression significantly enhanced the proliferation ability of PC cells in vitro and pancreatic tumor growth in vivo. The cell cycle analysis indicated that transition of G1­S phase was promoted by FOXF2. The cell cycle­associated proteins cyclin D1, CDK2, phosphorylated (p)­CDK2 and p­RB were upregulated in the FOXF2­overexpressing cells and downregulated in the cells with FOXF2 knockdown. Flow cytometric analysis and Hoechst staining showed that the percentage of apoptotic cells was significantly increased after FOXF2 was silenced. FOXF2 knockdown promoted expression of pro­apoptotic proteins (Bad, Bax and cleaved caspase­3) while suppressing the anti­apoptotic proteins (Bcl­2 and Bcl­xl) at the protein level. FOXF2 improved the migration and invasion of PC cells in vitro. Moreover, luciferase and chromatin immunoprecipitation assays revealed that FOXF2 binds to the MSI2 promoter, promoting its transcriptional expression. FOXF2 knockdown inhibited the MSI2 protein translation while enhancing the translation of NUMB protein, suppressing PC development in vivo. MSI2 silencing reversed the promotive effect mediated by FOXF2 on cell proliferation. These results demonstrated that FOXF2 is essential in PC progression, and the potential mechanism includes regulating MSI2 transcription.


Assuntos
Proliferação de Células , Progressão da Doença , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Proliferação de Células/genética , Linhagem Celular Tumoral , Apoptose/genética , Movimento Celular/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Técnicas de Silenciamento de Genes , Feminino
10.
Nanoscale ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940686

RESUMO

Thanks to their intrinsic properties, multifunctionality and unique geometrical features, two-dimensional nanomaterials have been used widely as reinforcements in polymer nanocomposites. The effective mechanical reinforcement of polymers is, however, a multifaceted problem as it depends not only on the intrinsic properties of the fillers and the matrix, but also upon a number of other important parameters. These parameters include the processing method, the interfacial properties, the aspect ratio, defects, orientation, agglomeration and volume fraction of the fillers. In this review, we summarize recent advances in the mechanical reinforcement of polymer nanocomposites from two-dimensional nanofillers with an emphasis on the mechanisms of reinforcement. Model, bulk and hybrid polymer nanocomposites are reviewed comprehensively. The use of Raman and photoluminescence spectroscopies is examined in light of the distinctive information they can yield upon stress transfer at interfaces. It is shown that the very diverse family of 2D nanofillers includes a number of materials that can attribute distrinctive features to a polymeric matrix, and we focus on the mechanical properties of both graphene and some of the most important 2D materials beyond graphene, including boron nitride, molybdenum disulphide, other transition metal dichalcogenides, MXenes and black phosphorous. In the first part of the review we evaluate the mechanical properties of 2D nanoplatelets in "model" nanocomposites. Next we examine how the performance of these materials can be optimised in bulk nanocomposites. Finally, combinations of these 2D nanofillers with other 2D nanomaterials or with nanofillers of other dimensions are assessed thoroughly, as such combinations can lead to additive or even synergistic mechanical effects. Existing unsolved problems and future perspectives are discussed.

11.
Int J Biol Macromol ; 274(Pt 2): 133422, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925187

RESUMO

BACKGROUND: Small extracellular vesicles derived from milk (Milk-sEVs) have the advantages of easy availability, low cost, low toxicity, and inhibition of inflammation. CD36 mediates inflammation stress in a variety of disease states. The purpose of this study was to investigate the role of Milk-sEVs in inhibiting fibroblast inflammation through CD36 and provide reference data for the treatment of chronic apical periodontitis. RESULTS: The addition of Milk-sEVs resulted in decreased expression of inflammation-related factors in L929 cells, and transcriptome sequencing screened for the DEG CD36 in the Milk-sEV treatment group under inflammation. The mouse model of apical periodontitis was successfully established, and CD36 expression increased with the development of inflammation. Transfection of si-CD36 into L929 cells reduced inflammation by inhibiting activation of the MAPK signaling pathway. CONCLUSIONS: CD36 expression increased with the development of apical periodontitis. In the setting of LPS-mediated inflammation, Milk-sEVs inhibited activation of the MAPK signaling pathway by decreasing the expression of CD36 in L929 cells and thereby reducing inflammation.

12.
Front Microbiol ; 15: 1422476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933037

RESUMO

Rice blast, a prevalent and highly destructive rice disease that significantly impacts rice yield, is caused by the rice blast fungus. In the present study, a strain named MTC-8, identified as Bacillus mojavensis, was demonstrated has strong antagonistic activity against the rice blast fungus, Rhizoctonia solani, Ustilaginoidea virens, and Bipolaria maydis. The potential biocontrol agents were identified using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis and chromatography. Further investigations elucidated the inhibitory mechanism of the isolated compound and demonstrated its ability to suppress spore germination, alter hyphal morphology, disrupt cell membrane integrity, and induce defense-related gene expression in rice. MTC-8 promoted plant growth and may lead to the development of a biocontrol agent that meets agricultural standards. Overall, the Bacillus mojavensis MTC-8 strain exerted beneficial effects on plant growth, immunity and disease resistance against rice blast fungus. In this study, we isolated and purified a bioactive substance from fermentation broth, and the results provide a foundation for the development and application of biopesticides. Elucidation of the inhibitory mechanism against rice blast fungus provides theoretical support for the identification of molecular targets. The successful development of a biocontrol agent lays the groundwork for its practical application in agriculture.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38917280

RESUMO

Multimodal aspect-based sentiment classification (MABSC) aims to identify the sentiment polarity toward specific aspects in multimodal data. It has gained significant attention with the increasing use of social media platforms. Existing approaches primarily focus on analyzing the content of posts to predict sentiment. However, they often struggle with limited contextual information inherent in social media posts, hindering accurate sentiment detection. To overcome this issue, we propose a novel multimodal dual cause analysis (MDCA) method to track the underlying causes behind expressed sentiments. MDCA can provide additional reasoning cause (RC) and direct cause (DC) to explain why users express certain emotions, thus helping improve the accuracy of sentiment prediction. To develop a model with MDCA, we construct MABSC datasets with RC and DC by utilizing large language models (LLMs) and visual-language models. Subsequently, we devise a multitask learning framework that leverages the datasets with cause data to train a small generative model, which can generate RC and DC, and predict the sentiment assisted by these causes. Experimental results on MABSC benchmark datasets demonstrate that our MDCA model achieves the state-of-the-art performance, and the small fine-tuned model exhibits superior adaptability to MABSC compared to large models like ChatGPT and BLIP-2.

14.
Sci Immunol ; 9(95): eadj9730, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728414

RESUMO

Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of neurological autoimmune diseases is promising, but CAR T cell kinetics and immune alterations after treatment are poorly understood. Here, we performed single-cell multi-omics sequencing of paired cerebrospinal fluid (CSF) and blood samples from patients with neuromyelitis optica spectrum disorder (NMOSD) treated with anti-B cell maturation antigen (BCMA) CAR T cells. Proliferating cytotoxic-like CD8+ CAR T cell clones were identified as the main effectors in autoimmunity. Anti-BCMA CAR T cells with enhanced features of chemotaxis efficiently crossed the blood-CSF barrier, eliminated plasmablasts and plasma cells in the CSF, and suppressed neuroinflammation. The CD44-expressing early memory phenotype in infusion products was potentially associated with CAR T cell persistence in autoimmunity. Moreover, CAR T cells from patients with NMOSD displayed distinctive features of suppressed cytotoxicity compared with those from hematological malignancies. Thus, we provide mechanistic insights into CAR T cell function in patients with neurological autoimmune disease.


Assuntos
Autoimunidade , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autoimunidade/imunologia , Sistema Nervoso Central/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/terapia , Receptores de Antígenos Quiméricos/imunologia , Análise de Célula Única
15.
Biochem Biophys Res Commun ; 717: 150028, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38714016

RESUMO

Mycoplasma pneumoniae (MP),as the most commonly infected respiratory pathogen in community-acquired pneumonia in preschool children,has becoming a prominent factor affecting children's respiratory health.Currently, there is a lack of easy, rapid, and accurate laboratory testing program for MP infection, which causes comparatively difficulty for clinical diagnostic.Here,we utilize loop-mediated isothermal amplification (LAMP) to amplify and characterize the P1 gene of MP, combined with nucleic acid lateral flow (NALF) for fast and visuallized detection of MP.Furthermore, we evaluated and analyzed the sensitivity, specificity and methodological consistency of the method.The results showed that the limit of detection(LoD) of MP-LAMP-NALF assay was down to 100 copys per reaction and there was no cross-reactivity with other pathogens infected the respiratory system. The concordance rate between MP-LAMP-NALF assay with quantitative real-time PCR was 94.3 %,which exhibiting excellent testing performance.We make superior the turnaround time of the MP-LAMP-NALF assay, which takes only about 50 min. In addition, there is no need for precision instruments and no restriction on the laboratory site.Collectively, LAMP-NALF assay targeting the P1 gene for Mycoplasma pneumoniae detection was a easy, precise and visual test which could be widely applied in outpatient and emergency departments or primary hospitals.When further optimized, it could be used as "point-of-care testing" of pathogens or multiple testing for pathogens.


Assuntos
Técnicas de Diagnóstico Molecular , Mycoplasma pneumoniae , Técnicas de Amplificação de Ácido Nucleico , Pneumonia por Mycoplasma , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade , Limite de Detecção , DNA Bacteriano/genética
16.
Front Microbiol ; 15: 1359698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706969

RESUMO

Soil salinization is a global constraint that significantly hampers agricultural production, with cotton being an important cash crop that is not immune to its detrimental effects. The rhizosphere microbiome plays a critical role in plant health and growth, which assists plants in resisting adverse abiotic stresses including soil salinization. This study explores the impact of soil salinization on cotton, including its effects on growth, yield, soil physical and chemical properties, as well as soil bacterial community structures. The results of ß-diversity analysis showed that there were significant differences in bacterial communities in saline-alkali soil at different growth stages of cotton. Besides, the more severity of soil salinization, the more abundance of Proteobacteria, Bacteroidota enriched in rhizosphere bacterial composition where the abundance of Acidobacteriota exhibited the opposite trend. And the co-occurrence network analysis showed that soil salinization affected the complexity of soil bacterial co-occurrence network. These findings provide valuable insights into the mechanisms by which soil salinization affects soil microorganisms in cotton rhizosphere soil and offer guidance for improving soil salinization using beneficial microorganisms.

17.
Sci Rep ; 14(1): 12094, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802400

RESUMO

Statins are thought to have positive effects on migraine but existing data are inconclusive. We aimed to evaluate the causal effect of such drugs on migraines using Mendelian randomization. We used four types of genetic instruments as proxies for HMG-CoA reductase inhibition. We included the expression quantitative trait loci of the HMG-CoA reductase gene and genetic variation within or near the HMG-CoA reductase gene region. Variants were associated with low-density lipoprotein cholesterol, apolipoprotein B, and total cholesterol. Genome-wide association study summary data for the three lipids were obtained from the UK Biobank. Comparable data for migraine were obtained from the International Headache Genetic Consortium and the FinnGen Consortium. Inverse variance weighting method was used for the primary analysis. Additional analyses included pleiotropic robust methods, colocalization, and meta-analysis. Genetically determined high expression of HMG-CoA reductase was associated with an increased risk of migraines (OR = 1.55, 95% CI 1.30-1.84, P = 6.87 × 10-7). Similarly, three genetically determined HMG-CoA reductase-mediated lipids were associated with an increased risk of migraine. These conclusions were consistent across meta-analyses. We found no evidence of bias caused by pleiotropy or genetic confounding factors. These findings support the hypothesis that statins can be used to treat migraine.


Assuntos
Estudo de Associação Genômica Ampla , Hidroximetilglutaril-CoA Redutases , Inibidores de Hidroximetilglutaril-CoA Redutases , Análise da Randomização Mendeliana , Transtornos de Enxaqueca , Polimorfismo de Nucleotídeo Único , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Locos de Características Quantitativas , Predisposição Genética para Doença
18.
J Multidiscip Healthc ; 17: 2371-2387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770171

RESUMO

Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38783564

RESUMO

MicroRNA (miRNA), crucial non-coding RNAs, have emerged as key biomarkers in molecular diagnostics, prognosis, and personalized medicine due to their significant role in gene expression regulation. Salivary miRNA, in particular, stands out for its non-invasive collection method and ease of accessibility, offering promising avenues for the development of point-of-care diagnostics for a spectrum of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Such development promises rapid and precise diagnosis, enabling timely treatment. Despite significant advancements in salivary miRNA-based testing, challenges persist in the quantification, multiplexing, sensitivity, and specificity, particularly for miRNA at low concentrations in complex biological mixtures. This work delves into these challenges, focusing on the development and application of salivary miRNA tests for point-of-care use. We explore the biogenesis of salivary miRNA and analyze their quantitative expression and their disease relevance in cancer, infection, and neurodegenerative disorders. We also examined recent progress in miRNA extraction, amplification, and multiplexed detection methods. This study offers a comprehensive view of the development of salivary miRNA-based point-of-care testing (POCT). Its successful advancement could revolutionize the early detection, monitoring, and management of various conditions, enhancing healthcare outcomes. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.


Assuntos
MicroRNAs , Testes Imediatos , Saliva , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , Saliva/química , Saliva/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito , Neoplasias/diagnóstico , Neoplasias/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo
20.
Front Microbiol ; 15: 1325047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690367

RESUMO

Background: It has been suggested in several observational studies that migraines are associated with the gut microbiota. It remains unclear, however, how the gut microbiota and migraines are causally related. Methods: We performed a bidirectional two-sample mendelian randomization study. Genome-wide association study (GWAS) summary statistics for the gut microbiota were obtained from the MiBioGen consortium (n = 18,340) and the Dutch Microbiota Project (n = 7,738). Pooled GWAS data for plasma metabolites were obtained from four different human metabolomics studies. GWAS summary data for migraine (cases = 48,975; controls = 450,381) were sourced from the International Headache Genetics Consortium. We used inverse-variance weighting as the primary analysis. Multiple sensitivity analyses were performed to ensure the robustness of the estimated results. We also conducted reverse mendelian randomization when a causal relationship between exposure and migraine was found. Results: LachnospiraceaeUCG001 (OR = 1.12, 95% CI: 1.05-1.20) was a risk factor for migraine. Blautia (OR = 0.93, 95% CI: 0.88-0.99), Eubacterium (nodatum group; OR = 0.94, 95% CI: 0.90-0.98), and Bacteroides fragilis (OR = 0.97, 95% CI: 0.94-1.00) may have a suggestive association with a lower migraine risk. Functional pathways of methionine synthesis (OR = 0.89, 95% CI: 0.83-0.95) associated with microbiota abundance and plasma hydrocinnamate (OR = 0.85, 95% CI: 0.73-1.00), which are downstream metabolites of Blautia and Bacteroides fragilis, respectively, may also be associated with lower migraine risk. No causal association between migraine and the gut microbiota or metabolites was found in reverse mendelian randomization analysis. Both significant horizontal pleiotropy and significant heterogeneity were not clearly identified. Conclusion: This Mendelian randomization analysis showed that LachnospiraceaeUCG001 was associated with an increased risk of migraine, while some bacteria in the gut microbiota may reduce migraine risk. These findings provide a reference for a deeper comprehension of the role of the gut-brain axis in migraine as well as possible targets for treatment interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...