Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392354

RESUMO

In recent years, several global events have severely disrupted economies and social structures, undermining confidence in the resilience of modern societies. Examples include the COVID-19 pandemic, which brought unprecedented health challenges and economic disruptions, and the emergence of geopolitical tensions and conflicts that have further strained international relations and economic stability. While empirical evidence on the dynamics and drivers of past societal collapse is mounting, a process-based understanding of these dynamics is still in its infancy. Here, we aim to identify and illustrate the underlying drivers of such societal instability or even collapse. The inspiration for this work is Joseph Tainter's theory of the "collapse of complex societies", which postulates that the complexity of societies increases as they solve problems, leading to diminishing returns on complexity investments and ultimately to collapse. In this work, we abstract this theory into a low-dimensional and stylized model of two classes of networked agents, hereafter referred to as "laborers" and "administrators". We numerically model the dynamics of societal complexity, measured as the fraction of "administrators", which was assumed to affect the productivity of connected energy-producing "laborers". We show that collapse becomes increasingly likely as the complexity of the model society continuously increases in response to external stresses that emulate Tainter's abstract notion of problems that societies must solve. We also provide an analytical approximation of the system's dominant dynamics, which matches well with the numerical experiments, and use it to study the influence on network link density, social mobility and productivity. Our work advances the understanding of social-ecological collapse and illustrates its potentially direct link to an ever-increasing societal complexity in response to external shocks or stresses via a self-reinforcing feedback.

2.
Sci Adv ; 9(37): eadh2458, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703365

RESUMO

This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.

3.
Chaos ; 33(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352506

RESUMO

Comparable to the traditional notion of stability in system dynamics, resilience is typically measured in a way that assesses the quality of a system's response, for example, the speed of its recovery. We present a broadly applicable complementary measurement framework that quantifies resilience similarly to basin stability by estimating a resilience basin, which reflects the extent of adverse influences that the system can recover from in a sufficient manner. In contrast to basin stability, the adverse influences considered here are not necessarily displacements in state space, but arbitrarily complex impacts to the system, quantified by adequate parameters. As a proof of concept, we present two applications: (i) the well-studied single-node power system as an easy-to-follow example and (ii) a stochastic model of a low-voltage DC power grid undergoing an unregulated energy transition consisting in the random appearance of prosumers. These act as decentral suppliers of photovoltaic power and alter the flow patterns while the grid topology remains unchanged. The resilience measurement framework is applied to evaluate the effect and efficiency of two response options: (i) upgrading the capacity of existing power lines and (ii) installing batteries in the prosumer households. The framework demonstrates that line upgrades can provide potentially unlimited resilience against energy decentralization, while household batteries are inherently limited (achieving ≤70% of the resilience of line upgrades). Further, the framework aids in optimizing budget efficiency by pointing toward threshold budget values as well as budget-dependent ideal strategies for the allocation of line upgrades and for the battery charging algorithm.

4.
Proc Natl Acad Sci U S A ; 119(32): e2120777119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917341

RESUMO

Tipping elements are nonlinear subsystems of the Earth system that have the potential to abruptly shift to another state if environmental change occurs close to a critical threshold with large consequences for human societies and ecosystems. Among these tipping elements may be the Amazon rainforest, which has been undergoing intensive anthropogenic activities and increasingly frequent droughts. Here, we assess how extreme deviations from climatological rainfall regimes may cause local forest collapse that cascades through the coupled forest-climate system. We develop a conceptual dynamic network model to isolate and uncover the role of atmospheric moisture recycling in such tipping cascades. We account for heterogeneity in critical thresholds of the forest caused by adaptation to local climatic conditions. Our results reveal that, despite this adaptation, a future climate characterized by permanent drought conditions could trigger a transition to an open canopy state particularly in the southern Amazon. The loss of atmospheric moisture recycling contributes to one-third of the tipping events. Thus, by exceeding local thresholds in forest adaptive capacity, local climate change impacts may propagate to other regions of the Amazon basin, causing a risk of forest shifts even in regions where critical thresholds have not been crossed locally.


Assuntos
Secas , Floresta Úmida , Mudança Climática , Árvores
5.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876516

RESUMO

Although spatial polarization of attitudes is extremely common around the world, we understand little about the mechanisms through which polarization on divisive issues rises and falls over time. We develop a theory that explains how political shocks can have different effects in different regions of a country depending upon local dynamics generated by the preexisting spatial distribution of attitudes and discussion networks. Where opinions were previously divided, attitudinal diversity is likely to persist after the shock. Meanwhile, where a clear precrisis majority exists on key issues, opinions should change in the direction of the predominant view. These dynamics result in greater local homogeneity in attitudes but at the same time exacerbate geographic polarization across regions and sometimes even within regions. We illustrate our theory by developing a modified version of the adaptive voter model, an adaptive network model of opinion dynamics, to study changes in attitudes toward the European Union (EU) in Ukraine in the context of the Euromaidan Revolution of 2013 to 2014. Using individual-level panel data from surveys fielded before and after the Euromaidan Revolution, we show that EU support increased in areas with high prior public support for EU integration but declined further where initial public attitudes were opposed to the EU, thereby increasing the spatial polarization of EU attitudes in Ukraine. Our tests suggest that the predictive power of both network and regression models increases significantly when we incorporate information about the geographic location of network participants, which highlights the importance of spatially rooted social networks.

6.
Phys Rev E ; 104(4-1): 044301, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781496

RESUMO

Tipping elements in the Earth system have received increased scientific attention over recent years due to their nonlinear behavior and the risks of abrupt state changes. While being stable over a large range of parameters, a tipping element undergoes a drastic shift in its state upon an additional small parameter change when close to its tipping point. Recently, the focus of research broadened towards emergent behavior in networks of tipping elements, like global tipping cascades triggered by local perturbations. Here, we analyze the response to the perturbation of a single node in a system that initially resides in an unstable equilibrium. The evolution is described in terms of coupled nonlinear equations for the cumulants of the distribution of the elements. We show that drift terms acting on individual elements and offsets in the coupling strength are subdominant in the limit of large networks, and we derive an analytical prediction for the evolution of the expectation (i.e., the first cumulant). It behaves like a single aggregated tipping element characterized by a dimensionless parameter that accounts for the network size, its overall connectivity, and the average coupling strength. The resulting predictions are in excellent agreement with numerical data for Erdös-Rényi, Barabási-Albert, and Watts-Strogatz networks of different size and with different coupling parameters.

7.
Eur Phys J Spec Top ; 230(16-17): 3311-3334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34611486

RESUMO

Spreading dynamics and complex contagion processes on networks are important mechanisms underlying the emergence of critical transitions, tipping points and other non-linear phenomena in complex human and natural systems. Increasing amounts of temporal network data are now becoming available to study such spreading processes of behaviours, opinions, ideas, diseases and innovations to test hypotheses regarding their specific properties. To this end, we here present a methodology based on dose-response functions and hypothesis testing using surrogate data models that randomise most aspects of the empirical data while conserving certain structures relevant to contagion, group or homophily dynamics. We demonstrate this methodology for synthetic temporal network data of spreading processes generated by the adaptive voter model. Furthermore, we apply it to empirical temporal network data from the Copenhagen Networks Study. This data set provides a physically-close-contact network between several hundreds of university students participating in the study over the course of 3 months. We study the potential spreading dynamics of the health-related behaviour "regularly going to the fitness studio" on this network. Based on a hierarchy of surrogate data models, we find that our method neither provides significant evidence for an influence of a dose-response-type network spreading process in this data set, nor significant evidence for homophily. The empirical dynamics in exercise behaviour are likely better described by individual features such as the disposition towards the behaviour, and the persistence to maintain it, as well as external influences affecting the whole group, and the non-trivial network structure. The proposed methodology is generic and promising also for applications to other temporal network data sets and traits of interest.

8.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34155097

RESUMO

Collective behavior provides a framework for understanding how the actions and properties of groups emerge from the way individuals generate and share information. In humans, information flows were initially shaped by natural selection yet are increasingly structured by emerging communication technologies. Our larger, more complex social networks now transfer high-fidelity information over vast distances at low cost. The digital age and the rise of social media have accelerated changes to our social systems, with poorly understood functional consequences. This gap in our knowledge represents a principal challenge to scientific progress, democracy, and actions to address global crises. We argue that the study of collective behavior must rise to a "crisis discipline" just as medicine, conservation, and climate science have, with a focus on providing actionable insight to policymakers and regulators for the stewardship of social systems.


Assuntos
Comportamento , Comportamento Cooperativo , Internacionalidade , Algoritmos , Comunicação , Humanos , Rede Social
9.
Nat Commun ; 11(1): 5177, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110092

RESUMO

Several large-scale cryosphere elements such as the Arctic summer sea ice, the mountain glaciers, the Greenland and West Antarctic Ice Sheet have changed substantially during the last century due to anthropogenic global warming. However, the impacts of their possible future disintegration on global mean temperature (GMT) and climate feedbacks have not yet been comprehensively evaluated. Here, we quantify this response using an Earth system model of intermediate complexity. Overall, we find a median additional global warming of 0.43 °C (interquartile range: 0.39-0.46 °C) at a CO2 concentration of 400 ppm. Most of this response (55%) is caused by albedo changes, but lapse rate together with water vapour (30%) and cloud feedbacks (15%) also contribute significantly. While a decay of the ice sheets would occur on centennial to millennial time scales, the Arctic might become ice-free during summer within the 21st century. Our findings imply an additional increase of the GMT on intermediate to long time scales.

10.
Nature ; 585(7826): 538-544, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32968257

RESUMO

More than half of Earth's freshwater resources are held by the Antarctic Ice Sheet, which thus represents by far the largest potential source for global sea-level rise under future warming conditions1. Its long-term stability determines the fate of our coastal cities and cultural heritage. Feedbacks between ice, atmosphere, ocean, and the solid Earth give rise to potential nonlinearities in its response to temperature changes. So far, we are lacking a comprehensive stability analysis of the Antarctic Ice Sheet for different amounts of global warming. Here we show that the Antarctic Ice Sheet exhibits a multitude of temperature thresholds beyond which ice loss is irreversible. Consistent with palaeodata2 we find, using the Parallel Ice Sheet Model3-5, that at global warming levels around 2 degrees Celsius above pre-industrial levels, West Antarctica is committed to long-term partial collapse owing to the marine ice-sheet instability. Between 6 and 9 degrees of warming above pre-industrial levels, the loss of more than 70 per cent of the present-day ice volume is triggered, mainly caused by the surface elevation feedback. At more than 10 degrees of warming above pre-industrial levels, Antarctica is committed to become virtually ice-free. The ice sheet's temperature sensitivity is 1.3 metres of sea-level equivalent per degree of warming up to 2 degrees above pre-industrial levels, almost doubling to 2.4 metres per degree of warming between 2 and 6 degrees and increasing to about 10 metres per degree of warming between 6 and 9 degrees. Each of these thresholds gives rise to hysteresis behaviour: that is, the currently observed ice-sheet configuration is not regained even if temperatures are reversed to present-day levels. In particular, the West Antarctic Ice Sheet does not regrow to its modern extent until temperatures are at least one degree Celsius lower than pre-industrial levels. Our results show that if the Paris Agreement is not met, Antarctica's long-term sea-level contribution will dramatically increase and exceed that of all other sources.

11.
R Soc Open Sci ; 7(6): 200599, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32742700

RESUMO

In ecology, climate and other fields, (sub)systems have been identified that can transition into a qualitatively different state when a critical threshold or tipping point in a driving process is crossed. An understanding of those tipping elements is of great interest given the increasing influence of humans on the biophysical Earth system. Complex interactions exist between tipping elements, e.g. physical mechanisms connect subsystems of the climate system. Based on earlier work on such coupled nonlinear systems, we systematically assessed the qualitative long-term behaviour of interacting tipping elements. We developed an understanding of the consequences of interactions on the tipping behaviour allowing for tipping cascades to emerge under certain conditions. The (narrative) application of these qualitative results to real-world examples of interacting tipping elements indicates that tipping cascades with profound consequences may occur: the interacting Greenland ice sheet and thermohaline ocean circulation might tip before the tipping points of the isolated subsystems are crossed. The eutrophication of the first lake in a lake chain might propagate through the following lakes without a crossing of their individual critical nutrient input levels. The possibility of emerging cascading tipping dynamics calls for the development of a unified theory of interacting tipping elements and the quantitative analysis of interacting real-world tipping elements.

12.
Sci Rep ; 10(1): 11202, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641784

RESUMO

Social tipping, where minorities trigger larger populations to engage in collective action, has been suggested as one key aspect in addressing contemporary global challenges. Here, we refine Granovetter's widely acknowledged theoretical threshold model of collective behavior as a numerical modelling tool for understanding social tipping processes and resolve issues that so far have hindered such applications. Based on real-world observations and social movement theory, we group the population into certain or potential actors, such that - in contrast to its original formulation - the model predicts non-trivial final shares of acting individuals. Then, we use a network cascade model to explain and analytically derive that previously hypothesized broad threshold distributions emerge if individuals become active via social interaction. Thus, through intuitive parameters and low dimensionality our refined model is adaptable to explain the likelihood of engaging in collective behavior where social-tipping-like processes emerge as saddle-node bifurcations and hysteresis.


Assuntos
Relações Interpessoais , Modelos Psicológicos , Comportamento Social , Rede Social , Teoria Social , Humanos , Análise de Rede Social
13.
Phys Rev E ; 101(4-1): 042311, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422827

RESUMO

Tipping points occur in diverse systems in various disciplines such as ecology, climate science, economy, and engineering. Tipping points are critical thresholds in system parameters or state variables at which a tiny perturbation can lead to a qualitative change of the system. Many systems with tipping points can be modeled as networks of coupled multistable subsystems, e.g., coupled patches of vegetation, connected lakes, interacting climate tipping elements, and multiscale infrastructure systems. In such networks, tipping events in one subsystem are able to induce tipping cascades via domino effects. Here, we investigate the effects of network topology on the occurrence of such cascades. Numerical cascade simulations with a conceptual dynamical model for tipping points are conducted on Erdos-Rényi, Watts-Strogatz, and Barabási-Albert networks. Additionally, we generate more realistic networks using data from moisture-recycling simulations of the Amazon rainforest and compare the results to those obtained for the model networks. We furthermore use a directed configuration model and a stochastic block model which preserve certain topological properties of the Amazon network to understand which of these properties are responsible for its increased vulnerability. We find that clustering and spatial organization increase the vulnerability of networks and can lead to tipping of the whole network. These results could be useful to evaluate which systems are vulnerable or robust due to their network topology and might help us to design or manage systems accordingly.

14.
Proc Natl Acad Sci U S A ; 117(23): 12915-12922, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434908

RESUMO

We will need collective action to avoid catastrophic climate change, and this will require valuing the long term as well as the short term. Shortsightedness and uncertainty have hindered progress in resolving this collective action problem and have been recognized as important barriers to cooperation among humans. Here, we propose a coupled social-ecological dilemma to investigate the interdependence of three well-identified components of this cooperation problem: 1) timescales of collapse and recovery in relation to time preferences regarding future outcomes, 2) the magnitude of the impact of collapse, and 3) the number of actors in the collective. We find that, under a sufficiently severe and time-distant collapse, how much the actors care for the future can transform the game from a tragedy of the commons into one of coordination, and even into a comedy of the commons in which cooperation dominates. Conversely, we also find conditions under which even strong concern for the future still does not transform the problem from tragedy to comedy. For a large number of participating actors, we find that the critical collapse impact, at which these game regime changes happen, converges to a fixed value of collapse impact per actor that is independent of the enhancement factor of the public good, which is usually regarded as the driver of the dilemma. Our results not only call for experimental testing but also help explain why polarization in beliefs about human-caused climate change can threaten global cooperation agreements.

15.
Chaos ; 30(4): 043129, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32357654

RESUMO

In this study, we investigate how specific micro-interaction structures (motifs) affect the occurrence of tipping cascades on networks of stylized tipping elements. We compare the properties of cascades in Erdos-Rényi networks and an exemplary moisture recycling network of the Amazon rainforest. Within these networks, decisive small-scale motifs are the feed forward loop, the secondary feed forward loop, the zero loop, and the neighboring loop. Of all motifs, the feed forward loop motif stands out in tipping cascades since it decreases the critical coupling strength necessary to initiate a cascade more than the other motifs. We find that for this motif, the reduction of critical coupling strength is 11% less than the critical coupling of a pair of tipping elements. For highly connected networks, our analysis reveals that coupled feed forward loops coincide with a strong 90% decrease in the critical coupling strength. For the highly clustered moisture recycling network in the Amazon, we observe regions of a very high motif occurrence for each of the four investigated motifs, suggesting that these regions are more vulnerable. The occurrence of motifs is found to be one order of magnitude higher than in a random Erdos-Rényi network. This emphasizes the importance of local interaction structures for the emergence of global cascades and the stability of the network as a whole.


Assuntos
Motivos de Aminoácidos , Modelos Biológicos , Algoritmos , Simulação por Computador , Humanos
17.
Sci Rep ; 10(1): 1302, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992786

RESUMO

Indian Summer Monsoon (ISM) rainfall has a direct effect on the livelihoods of two billion people in the Indian-subcontinent. Yet, our understanding of the drivers of multi-decadal variability of the ISM is far from being complete. In this context, large-scale forcing of ISM rainfall variability with multi-decadal resolution over the last two millennia is investigated using new records of sea surface salinity (δ18Ow) and sea surface temperatures (SSTs) from the Bay of Bengal (BoB). Higher δ18Ow values during the Dark Age Cold Period (1550 to 1250 years BP) and the Little Ice Age (700 to 200 years BP) are suggestive of reduced ISM rainfall, whereas lower δ18Ow values during the Medieval Warm Period (1200 to 800 years BP) and the major portion of the Roman Warm Period (1950 to 1550 years BP) indicate a wetter ISM. This variability in ISM rainfall appears to be modulated by the Atlantic Multi-decadal Oscillation (AMO) via changes in large-scale thermal contrast between the Asian land mass and the Indian Ocean, a relationship that is also identifiable in the observational data of the last century. Therefore, we suggest that inter-hemispheric scale interactions between such extra tropical forcing mechanisms and global warming are likely to be influential in determining future trends in ISM rainfall.

18.
Proc Natl Acad Sci U S A ; 117(5): 2354-2365, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964839

RESUMO

Safely achieving the goals of the Paris Climate Agreement requires a worldwide transformation to carbon-neutral societies within the next 30 y. Accelerated technological progress and policy implementations are required to deliver emissions reductions at rates sufficiently fast to avoid crossing dangerous tipping points in the Earth's climate system. Here, we discuss and evaluate the potential of social tipping interventions (STIs) that can activate contagious processes of rapidly spreading technologies, behaviors, social norms, and structural reorganization within their functional domains that we refer to as social tipping elements (STEs). STEs are subdomains of the planetary socioeconomic system where the required disruptive change may take place and lead to a sufficiently fast reduction in anthropogenic greenhouse gas emissions. The results are based on online expert elicitation, a subsequent expert workshop, and a literature review. The STIs that could trigger the tipping of STE subsystems include 1) removing fossil-fuel subsidies and incentivizing decentralized energy generation (STE1, energy production and storage systems), 2) building carbon-neutral cities (STE2, human settlements), 3) divesting from assets linked to fossil fuels (STE3, financial markets), 4) revealing the moral implications of fossil fuels (STE4, norms and value systems), 5) strengthening climate education and engagement (STE5, education system), and 6) disclosing information on greenhouse gas emissions (STE6, information feedbacks). Our research reveals important areas of focus for larger-scale empirical and modeling efforts to better understand the potentials of harnessing social tipping dynamics for climate change mitigation.

19.
Phys Rev E ; 99(4-1): 043305, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108579

RESUMO

Reinforcement learning in multiagent systems has been studied in the fields of economic game theory, artificial intelligence, and statistical physics by developing an analytical understanding of the learning dynamics (often in relation to the replicator dynamics of evolutionary game theory). However, the majority of these analytical studies focuses on repeated normal form games, which only have a single environmental state. Environmental dynamics, i.e., changes in the state of an environment affecting the agents' payoffs has received less attention, lacking a universal method to obtain deterministic equations from established multistate reinforcement learning algorithms. In this work we present a methodological extension, separating the interaction from the adaptation timescale, to derive the deterministic limit of a general class of reinforcement learning algorithms, called temporal difference learning. This form of learning is equipped to function in more realistic multistate environments by using the estimated value of future environmental states to adapt the agent's behavior. We demonstrate the potential of our method with the three well-established learning algorithms Q learning, SARSA learning, and actor-critic learning. Illustrations of their dynamics on two multiagent, multistate environments reveal a wide range of different dynamical regimes, such as convergence to fixed points, limit cycles, and even deterministic chaos.

20.
Chaos ; 29(12): 123122, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893656

RESUMO

Increasingly complex nonlinear World-Earth system models are used for describing the dynamics of the biophysical Earth system and the socioeconomic and sociocultural World of human societies and their interactions. Identifying pathways toward a sustainable future in these models for informing policymakers and the wider public, e.g., pathways leading to robust mitigation of dangerous anthropogenic climate change, is a challenging and widely investigated task in the field of climate research and broader Earth system science. This problem is particularly difficult when constraints on avoiding transgressions of planetary boundaries and social foundations need to be taken into account. In this work, we propose to combine recently developed machine learning techniques, namely, deep reinforcement learning (DRL), with classical analysis of trajectories in the World-Earth system. Based on the concept of the agent-environment interface, we develop an agent that is generally able to act and learn in variable manageable environment models of the Earth system. We demonstrate the potential of our framework by applying DRL algorithms to two stylized World-Earth system models. Conceptually, we explore thereby the feasibility of finding novel global governance policies leading into a safe and just operating space constrained by certain planetary and socioeconomic boundaries. The artificially intelligent agent learns that the timing of a specific mix of taxing carbon emissions and subsidies on renewables is of crucial relevance for finding World-Earth system trajectories that are sustainable in the long term.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...