Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 12(8): 172, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845113

RESUMO

Microbial desalination cells (MDC) are evaluated as an environmentally friendly approach for purifying saline water by using power generated by the decomposition of organic materials in the wastewater. The present study is to evaluate the ferrocyanide-redox and biocathode approach in treating simulated saline water and subsequently recovering bio-electricity using actual domestic reverse osmosis reject water. For the desalination of simulated saline water and domestic reverse osmosis reject water, a three-chamber microbial desalination cell with graphite electrodes and anion and cation exchange membranes was constructed. When treating simulated saline water, the biocathode technique achieved a 5% improvement in salt removal and a 4.9% increase in current and power density when compared to the ferrocyanide-redox approach. When biocathode MDC was used to treat domestic reverse osmosis reject water, a maximum current and power density of 3.81 µA/cm2 and 0.337 µW/cm2, respectively, were recorded, as well as COD removal of 83.9% at the desalination chamber and ions reduction for Na, K, and Ca of up to 79%, 76.5%, and 72%, respectively, in a batch operation for 31 days with a stable pH (≈ 7). Thus, the study revealed a microbial desalination cell capable of recovering bioenergy and reducing salt from domestic reverse osmosis reject water with a consistent pH range.

2.
3 Biotech ; 12(1): 18, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34926122

RESUMO

Various microbial strains and techniques are being used to improve power production in microbial fuel cells. Cow dung is a peculiar source of anaerobic and micro-aerophilic organisms that were employed in this study to isolate exo-electrogenic microorganisms. To validate their exo-electrogenic nature, all eight visually distinct bacterial single-cell colonies were tested using the ferrocyanide reduction assay, which resulted in the selection of one bacterial strain AD1-ELB with the ability to reduce ferrocyanide for further biochemical, physiological and electrochemical characterization. The selected strain AD1-ELB was identified as Bacillus velezensis by 16 s rRNA gene sequencing. When used in a single-chambered MFC, the isolated AD1-ELB strain produced a maximum open-circuit voltage of 455 mV with a maximum current density of 51.78 µA/cm2 and maximum power density of 4.33 µW/cm2 on the 16th day. Bacillus velezensis AD1-ELB strain was treated with low-frequency ultrasound (40 kHz) for 1, 2, 3, 4, and 5 min to assess the effect of ultrasonic pre-treatment on an isolated pure culture-based microbial fuel cell. A 3-min exposure to low-frequency ultrasonic therapy resulted in an increase in maximum power of 4.33 µW/cm2 with a current density of 51.78 µA/cm2 in the MFC, which decreases significantly after 4 and 5 min. Thus, the overall power density achieved was 1.89 times greater than in MFCs with untreated strain. These findings support the use of low-frequency ultrasonic stimulation to improve the performance of microbial fuel cell devices and are restricted to the pure, single-cell strain AD1-ELB, with the potential for variation if some other isolated strain is utilized, hence requiring further study to determine its relative variations.

3.
Sci Total Environ ; 780: 146544, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770608

RESUMO

Globally estrogenic pollutants are a cause of concern in wastewaters and water bodies because of their high endocrine disrupting activity leading to extremely negative impacts on humans and other organisms even at very low environmental concentrations. Bioremediation of estrogens has been studied extensively and one technology that has emerged with its promising capabilities is Bioelectrochemical Systems (BESs). Several studies in the past have investigated BESs applications for treatment of wastewaters containing toxic recalcitrant pollutants with a primary focus on improvement of performance of these systems for their deployment in real field applications. But the information is scattered and further the improvements are difficult to achieve for standalone BESs. This review critically examines the various existing treatment technologies for the effective estrogen degradation. The major focus of this paper is on the technological advancements for scaling up of these BESs for the real field applications along with their integration with the existing and conventional wastewater treatment systems. A detailed discussion on few selected microbial species having the unusual properties of heterotrophic nitrification and extraordinary stress response ability to toxic compounds and their degradation has been highlighted. Based on the in-depth study and analysis of BESs, microbes and possible benefits of various treatment methods for estrogen removal, we have proposed a sustainable Hybrid BES-centered treatment system for this purpose as a choice for wastewater treatment. We have also identified three pipeline tasks that reflect the vital parts of the life cycle of drugs and integrated treatment unit, as a way forward to foster bioeconomy along with an approach for sustainable wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Recuperação e Remediação Ambiental , Purificação da Água , Biodegradação Ambiental , Estrogênios , Humanos , Águas Residuárias
4.
J Hazard Mater ; 408: 124421, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199150

RESUMO

This study presents the biodegradation potential of ethinylestradiol (EE2) in anaerobic environments using exoelectrogenic activity of Rhodopseudomonas palustris. EE2, a basic ingredient in oral contraceptives, is a significant estrogenic micropollutant in various wastewaters and is considered highly recalcitrant. This recalcitrance of EE2 has caused anoxic areas to become repositories for these pollutants. Thus, it is essential to find the microorganisms and suitable methods to degrade this compound. An initial EE2 concentration of 1 mg/L, used in an anaerobic photobioreactor, resulted in 70% EE2 degradation over a period of 16 days with an increase of 63% in hydrogen production when EE2 was used with glycerol as the main carbon source in the culture medium. Furthermore, in the novel setup of hybrid photo-assisted microbial fuel cell (h-PMFC) employed here, EE2 degradation enhanced to 89.82% with a maximum power density of 0.633 ± 0.04 mW/m2. The hybrid MFC employed here could metabolize EE2 and sustained the bio-hydrogen production for 14 days to run the hydrogen fuel cell which otherwise could not be sustained with glycerol only and thus increased the overall power output. The current work highlights the use of R. palustris and the significance of co-metabolism in bioremediation of pollutants and bioenergy generation.


Assuntos
Fontes de Energia Bioelétrica , Etinilestradiol , Biodegradação Ambiental , Hidrogênio , Rodopseudomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...